-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSubsetSum.java
290 lines (264 loc) · 10.6 KB
/
SubsetSum.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
/**
* Building a Subset Tree (a collection of Subset Heaps) of size n from set S:
* 1. Sort the set
* 2. Set the root node to the n smallest elements of S
* 3. The first child is the subset of the parent node with the greatest element replaced by
* the next greatest element in S. If no such greater element exists, then you have reached
* the end of S and this child node should not be generated.
* 4. Let the variable i be equal to the second greatest index in the subset of the parent
* node. The next child is the subset of the parent node with the element at index i
* replaced by the next greatest element in S. If that element already exists in the subset,
* then increment the conflicting element with its next greatest element in S. Repeat with
* any additional conflicts until none exist or there is no greater element in S with which
* to increment. If the latter is the case, then you have reached the end of S and this
* child node should not be generated.
* 5. Decerement i by 1 and repeat Step 4 for all subsequent children until i is less than the
* smallest index at which the parent incremented its subset value.
* 6. The algorithm terminates when no additional incrementations can be made (i.e. when the
* greatest element in the subset is equal to the greatest element in S).
* You will now have a min-heap of all subsets of length n from set S.
*
* This class, SubsetSum, does not build the full Subset Tree, instead constructing it on demand
* when searching for the k'th smallest element in the tree. All elements are scaled to be positive,
* with the necessary offset that was applied to each element being stored in a variable. Each
* n-sized Subset Tree is then searched for the target sum. The target sum is appropriately
* incremented for each n-sized Subset Tree.
*
* @author Dan Shea
*/
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;
import java.util.PriorityQueue;
public class SubsetSum {
public ArrayList<Integer> input = new ArrayList<Integer>();
public ArrayList<Integer> scaledInput = new ArrayList<Integer>();
public TreeNode<List<Integer>> tree;
public SubsetSum() {
input.add( -7 );
input.add( -3 );
input.add( -2 );
input.add( 0 );
input.add( 1 );
input.add( 5 );
input.add( 8 );
input.add( 17 );
input.add( 21 );
// The sum for which we want to find an appropriate subset
int target = 50;
// 1. Sort the set
Collections.sort( input );
// Scale the set so that there are no negative elements, with the offset
// being stored in a variable
int offset = 0;
if ( input.get( 0 ) <= 0 ) {
offset = Math.abs( input.get( 0 ) ) + 1;
for ( int i = 0; i < input.size( ); ++i ) {
scaledInput.add( input.get( i ) + offset );
}
}
// Search all n-sized min-heaps from set S for the target sum
int scaledTarget;
boolean targetFound = false;
List<Integer> result = new ArrayList<Integer>( );
int resultSum = 0;
for ( int n = 1; n <= input.size( ); ++n ) {
// Scale the target to be searchable in the n-sized Subset Tree
scaledTarget = target + ( offset * n );
// Now generate the k'th smallest subset
tree = buildTree( scaledInput, n );
result = binarySearch( tree, 0, choose( input.size( ), n ), scaledTarget );
if ( result == null ) {
continue;
}
if ( sum( result ) == scaledTarget ) {
targetFound = true;
break;
}
}
// Output the result
if ( targetFound ) {
for ( int i = 0; i < result.size( ); ++i ) {
result.set( i, result.get( i ) - offset );
}
System.out.println( "Subset that sums to the target sum has been found!" );
printList( result );
}
else {
System.out.println( "No subset sums to the target sum " + target );
}
}
public List<Integer> binarySearch( TreeNode<List<Integer>> tree, int lowerBound,
int upperBound, int target ) {
if ( lowerBound > upperBound ) {
return null;
}
int position = Math.round( ( lowerBound + upperBound ) / 2.0f );
if ( position == 0 ) {
return null;
}
List<Integer> kthMin = findKthMin( tree, position );
int sum = sum( kthMin );
if ( lowerBound == upperBound ) {
if ( sum == target ) {
return kthMin;
}
else {
return null;
}
}
else {
if ( sum == target ) {
return kthMin;
}
else if ( sum < target ) {
if ( lowerBound == position ) {
position += 1;
}
return binarySearch( tree, position, upperBound, target );
}
else {
if ( upperBound == position ) {
position -= 1;
}
return binarySearch( tree, lowerBound, position, target );
}
}
}
public TreeNode<List<Integer>> buildTree( ArrayList<Integer> list, int n ) {
TreeNode<List<Integer>> tree = new TreeNode<List<Integer>>();
ArrayList<Integer> idcs = new ArrayList<Integer>();
for ( int i = 0; i < n; ++i ) {
idcs.add( i );
}
// 2. Set the root node to the n smallest elements of S
tree.setData( list.subList( 0, n ) );
tree.setIndices( idcs );
tree.setLimit( 0 );
return tree;
}
/*
* In this case, the algorithm terminates after the first layer of chilren are created;
* the recursive case is not run
*/
public List<TreeNode<List<Integer>>> buildChildren( List<Integer> list, List<Integer> indices, int limit ) {
ArrayList<TreeNode<List<Integer>>> children = new ArrayList<TreeNode<List<Integer>>>();
// 3. The first child is the subset of the parent node with the greatest element replaced by
// the next greatest element in S. If no such greater element exists, then you have reached
// the end of S and this child node should not be generated.
// 4. Let the variable i be equal to the second greatest index in the subset of the parent
// node. The next child is the subset of the parent node with the element at index i
// replaced by the next greatest element in S. If that element already exists in the subset,
// then increment the conflicting element with its next greatest element in S. Repeat with
// any additional conflicts until none exist or there is no greater element in S with which
// to increment. If the latter is the case, then you have reached the end of S and this
// child node should not be generated.
// 5. Decerement i by 1 and repeat Step 4 for all subsequent children until i is less than the
// smallest index at which the parent incremented its subset value.
for ( int i = list.size( ) - 1; i >= limit; --i ) {
// 6. The algorithm terminates when no additional incrementations can be made (i.e. when the
// greatest element in the subset is equal to the greatest element in S).
if ( indices.get( indices.size( ) - 1 ) == input.size( ) - 1 ) {
continue;
}
TreeNode<List<Integer>> child = new TreeNode<List<Integer>>();
ArrayList<ArrayList<Integer>> tmpArr = incrementList( list, indices, i );
child.setData( tmpArr.get( 0 ) );
child.setIndices( tmpArr.get( 1 ) );
child.setLimit( i );
children.add( child );
}
return children;
}
public ArrayList<ArrayList<Integer>> incrementList( List<Integer> list, List<Integer> indices, int idx ) {
if ( list.size( ) < 1 ) {
return null;
}
ArrayList<Integer> newList = deepCopy( list );
ArrayList<Integer> newIndices = deepCopy( indices );
if ( list.size( ) == 1 ) {
if ( idx < list.size( ) ) {
newList.set( idx, scaledInput.get( indices.get( idx ) + 1 ) );
newIndices.set( idx, indices.get( idx ) + 1 );
}
else {
return null;
}
}
else {
do {
newList.set( idx, scaledInput.get( indices.get( idx ) + 1 ) );
newIndices.set( idx, indices.get( idx ) + 1 );
++idx;
} while ( idx < list.size( ) && newIndices.get( idx - 1 ) == indices.get( idx ) );
if ( newIndices.get( newIndices.size( ) - 1 ) == newIndices.get( newIndices.size( ) - 2 ) ) {
return null;
}
}
ArrayList<ArrayList<Integer>> retVal = new ArrayList<ArrayList<Integer>>();
retVal.add( newList );
retVal.add( newIndices );
return retVal;
}
public ArrayList<Integer> deepCopy( List<Integer> list ) {
ArrayList<Integer> newList = new ArrayList<Integer>();
for ( int i = 0; i < list.size(); ++i ) {
newList.add( list.get( i ) );
}
return newList;
}
@SuppressWarnings("unchecked")
public List<Integer> findKthMin( TreeNode<List<Integer>> tree, int k ) {
Comparator<TreeNode<List<Integer>>> comparator = new NodeComparator();
PriorityQueue<TreeNode<List<Integer>>> toVisit = new PriorityQueue<TreeNode<List<Integer>>>( 11, comparator );
TreeNode<List<Integer>> root = new TreeNode<List<Integer>>( tree.getData( ) );
root.setIndices( tree.getIndices( ) );
root.setLimit( tree.getLimit( ) );
root.setChildren( tree.getChildren( ) );
toVisit.add( root );
ArrayList<TreeNode<List<Integer>>> smallestNodes = new ArrayList<TreeNode<List<Integer>>>( );
while ( smallestNodes.size( ) < k ) {
TreeNode<List<Integer>> node = toVisit.poll( );
List<TreeNode<List<Integer>>> children = buildChildren( node.getData( ), node.getIndices( ),
node.getLimit( ) );
for ( TreeNode<List<Integer>> child : children ) {
TreeNode<List<Integer>> newChild = new TreeNode<List<Integer>>( child.getData( ) );
newChild.setIndices( child.getIndices( ) );
newChild.setLimit( child.getLimit( ) );
newChild.setChildren( child.getChildren( ) );
toVisit.add( newChild );
}
smallestNodes.add( node );
}
return smallestNodes.get( k - 1 ).getData( );
}
public int sum( List<Integer> node ) {
int sum = 0;
for ( Integer n : node ) {
sum += n;
}
return sum;
}
public void printList( List<Integer> list ) {
for ( int i = 0; i < list.size( ); ++i ) {
System.out.print( list.get( i ) + "\t" );
}
System.out.println( );
}
public static int choose( int n, int k ) {
if (k > n) {
return 0;
}
if (k == 0) {
return 1;
}
if (k > n / 2) {
return choose(n, n - k);
}
return n * choose(n - 1, k - 1) / k;
}
public static void main(String[] args) {
new SubsetSum( );
}
}