-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathparallel_algorithm.d
1181 lines (968 loc) · 33.8 KB
/
parallel_algorithm.d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import std.typetuple, std.parallelism, std.range, std.functional,
std.algorithm, std.stdio, std.array, std.traits, std.conv,
core.stdc.string, core.atomic;
version(unittest) {
import std.random, std.typecons, std.math;
}
private template finiteRandom(R) {
enum bool finiteRandom = isRandomAccessRange!R && std.range.hasLength!R;
}
// Tracks whether the last merge was from -> buf or buf -> from. This
// avoids needing to copy from buf to from after every iteration.
private enum MergedTo {
from,
buf
}
/**
Sort a range using a parallel merge sort algorithm, falling back to
$(D baseAlgorithm) for small subranges. Usage is similar to
$(XREF algorithm, sort).
Params:
pred = The predicate to sort on.
baseAlgorithm = The algorithm to fall back to for small subranges.
$(D parallelSort) is a stable sort iff $(D baseAlgorithm) is a stable sort.
range = The range to be sorted.
minParallelSort = The smallest subrange to sort in parallel. Small values
will expose more parallelism, but also incur more overhead.
minParallelMerge = The smallest subrange to merge in parallel. Since
merging is a cheaper operation than sorting, this should be somewhat larger
than $(D minParallelSort).
pool = The $(XREF parallelism, TaskPool) to use. If null, the global
default task pool returned by $(XREF parallelism, taskPool) will be used.
*/
SortedRange!(R, pred)
parallelSort(alias pred = "a < b", alias baseAlgorithm = std.algorithm.sort, R)(
R range,
size_t minParallelSort = 1024,
size_t minParallelMerge = 4096,
TaskPool pool = null
) if(finiteRandom!R && hasAssignableElements!R) {
// TODO: Use C heap or TempAlloc or something.
auto buf = new ElementType!(R)[range.length];
if(pool is null) pool = std.parallelism.taskPool;
immutable mergedTo = parallelSortImpl!(pred, baseAlgorithm, R, typeof(buf))
(range, buf, minParallelSort, minParallelMerge, pool
);
if(mergedTo == MergedTo.buf) {
copy(buf, range);
}
return SortedRange!(R, pred)(range);
}
unittest {
// This algorithm is kind of complicated with all the tricks to prevent
// excess copying and stuff. Use monte carlo unit testing.
auto gen = Random(314159265); // Make tests deterministic but pseudo-random.
foreach(i; 0..100) {
auto nums = new uint[uniform(10, 20, gen)];
foreach(ref num; nums) {
num = uniform(0, 1_000_000, gen);
}
auto duped = nums.dup;
parallelSort!"a > b"(duped, 4, 8);
sort!"a > b"(nums);
assert(duped == nums);
}
// Test sort stability.
auto arr = new Tuple!(int, int)[32_768];
foreach(ref elem; arr) {
elem[0] = uniform(0, 10, gen);
elem[1] = uniform(0, 10, gen);
}
static void stableSort(alias pred, R)(R range) {
// Quick and dirty insertion sort, for testing only.
alias binaryFun!pred comp;
foreach(i; 1..range.length) {
for(size_t j = i; j > 0; j--) {
if(comp(range[j], range[j - 1])) {
swap(range[j], range[j - 1]);
} else {
break;
}
}
}
}
parallelSort!("a[1] < b[1]", stableSort)(arr);
assert(isSorted!"a[1] < b[1]"(arr));
parallelSort!("a[0] < b[0]", stableSort)(arr);
assert(isSorted!"a[0] < b[0]"(arr));
foreach(i; 0..arr.length - 1) {
if(arr[i][0] == arr[i + 1][0]) {
assert(arr[i][1] <= arr[i + 1][1]);
}
}
}
MergedTo parallelSortImpl(alias pred, alias baseAlgorithm, R1, R2)(
R1 range,
R2 buf,
size_t minParallelSort,
size_t minParallelMerge,
TaskPool pool
) {
assert(pool);
if(range.length < minParallelSort) {
baseAlgorithm!pred(range);
return MergedTo.from;
}
immutable len = range.length;
auto left = range[0..len / 2];
auto right = range[len / 2..len];
auto bufLeft = buf[0..len / 2];
auto bufRight = buf[len / 2..len];
auto ltask = scopedTask!(parallelSortImpl!(pred, baseAlgorithm, R1, R2))(
left, bufLeft, minParallelSort, minParallelMerge, pool
);
pool.put(ltask);
immutable rloc = parallelSortImpl!(pred, baseAlgorithm, R1, R2)(
right, bufRight, minParallelSort, minParallelMerge, pool
);
auto lloc = ltask.yieldForce();
if(lloc == MergedTo.from && rloc == MergedTo.buf) {
copy(left, bufLeft);
lloc = MergedTo.buf;
} else if(lloc == MergedTo.buf && rloc == MergedTo.from) {
copy(right, bufRight);
}
if(lloc == MergedTo.from) {
parallelMerge!(pred, R1, R1, R2)(left, right, buf, minParallelMerge);
return MergedTo.buf;
} else {
parallelMerge!(pred, R2, R2, R1)(bufLeft, bufRight, range, minParallelMerge);
return MergedTo.from;
}
}
/**
Merge ranges $(D from1) and $(D from2), which are assumed sorted according
to $(D pred), into $(D buf) using a parallel divide-and-conquer algorithm.
Params:
from1 = The first of the two sorted ranges to be merged. This must be a
random access range with length.
from2 = The second of the two sorted ranges to be merged. This must also
be a random access range with length and must have an identical element type to
$(D from1).
buf = The buffer to merge into. This must be a random access range with
length equal to $(D from1.length + from2.length) and must have assignable
elements.
minParallel = The minimum merge size to parallelize. Smaller values
create more parallel work units resulting in greater scalability but
increased overhead.
pool = The $(XREF parallelism, TaskPool) to use. If null, the global
default task pool returned by $(XREF parallelism, taskPool) will be used.
*/
void parallelMerge(alias pred = "a < b", R1, R2, R3)(
R1 from1,
R2 from2,
R3 buf,
size_t minParallel = 4096,
TaskPool pool = null
) if(allSatisfy!(finiteRandom, TypeTuple!(R1, R2, R3)) &&
is(ElementType!R1 == ElementType!R2) &&
is(ElementType!R2 == ElementType!R3) &&
hasAssignableElements!R3
)
in {
assert(from1.length + from2.length == buf.length);
} body {
if(buf.length < minParallel) {
return merge!(pred, R1, R2, R3)(from1, from2, buf);
}
immutable len1 = from1.length;
immutable len2 = from2.length;
if(len1 == 0 && len2 == 0) {
return;
}
typeof(from1) left1, right1;
typeof(from2) left2, right2;
alias binaryFun!pred comp;
if(len1 > len2) {
auto mid1Index = len1 / 2;
// This is necessary to make the sort stable:
while(mid1Index > 0 && !comp(from1[mid1Index - 1], from1[mid1Index])) {
mid1Index--;
}
auto mid1 = from1[mid1Index];
left1 = from1[0..mid1Index];
right1 = from1[mid1Index..len1];
left2 = assumeSorted!pred(from2).lowerBound(mid1).release;
right2 = from2[left2.length..len2];
} else {
auto mid2Index = len2 / 2;
// This is necessary to make the sort stable:
while(mid2Index > 0 && !comp(from2[mid2Index - 1], from2[mid2Index])) {
mid2Index--;
}
auto mid2 = from2[mid2Index];
left2 = from2[0..mid2Index];
right2 = from2[mid2Index..len2];
left1 = assumeSorted!pred(from1).lowerBound(mid2).release;
right1 = from1[left1.length..len1];
}
auto leftBuf = buf[0..left1.length + left2.length];
auto rightBuf = buf[leftBuf.length..buf.length];
if(leftBuf.length == 0 || rightBuf.length == 0) {
// Then recursing further would lead to infinite recursion.
return merge!(pred, R1, R2, R3)(from1, from2, buf);
}
if(pool is null) pool = std.parallelism.taskPool;
auto rightTask = scopedTask!(parallelMerge!(pred, R1, R2, R3))(
right1, right2, rightBuf, minParallel, pool
);
pool.put(rightTask);
parallelMerge!(pred, R1, R2, R3)(left1, left2, leftBuf, minParallel, pool);
rightTask.yieldForce();
}
unittest {
auto from1 = [1, 2, 4, 8, 16, 32];
auto from2 = [2, 4, 6, 8, 10, 12];
auto buf = new int[from1.length + from2.length];
parallelMerge(from1, from2, buf, 2);
assert(buf == [1, 2, 2, 4, 4, 6, 8, 8, 10, 12, 16, 32]);
}
/**
Merge ranges $(D from1) and $(D from2), which are assumed sorted according
to $(D pred), into $(D buf) using a sequential algorithm.
Params:
from1 = The first of the two sorted ranges to be merged.
from2 = The second of the two sorted ranges to be merged. This must also
be an input range and must have an identical element type to
$(D from1).
buf = The buffer to merge into. This must be an output range with
capacity at least equal to $(D walkLength(from1) + walkLength(from2)).
Example:
---
auto from1 = [1, 2, 4, 8, 16, 32];
auto from2 = [2, 4, 6, 8, 10, 12];
auto buf = new int[from1.length + from2.length];
merge(from1, from2, buf);
assert(buf == [1, 2, 2, 4, 4, 6, 8, 8, 10, 12, 16, 32]);
---
*/
void merge(alias pred = "a < b", R1, R2, R3)(
R1 from1,
R2 from2,
R3 buf
) if(allSatisfy!(isInputRange, TypeTuple!(R1, R2)) &&
is(ElementType!R1 == ElementType!R2) &&
is(ElementType!R2 == ElementType!R3) &&
isOutputRange!(R3, ElementType!R1)
) {
alias binaryFun!(pred) comp;
static if(allSatisfy!(isRandomAccessRange, TypeTuple!(R1, R2, R3))) {
// This code is empirically slightly more efficient in the case of
// arrays.
size_t index1 = 0, index2 = 0, bufIndex = 0;
immutable len1 = from1.length;
immutable len2 = from2.length;
while(index1 < len1 && index2 < len2) {
if(comp(from2[index2], from1[index1])) {
buf[bufIndex] = from2[index2];
index2++;
} else {
buf[bufIndex] = from1[index1];
index1++;
}
bufIndex++;
}
if(index1 < len1) {
assert(index2 == len2);
copy(from1[index1..len1], buf[bufIndex..len1 + len2]);
} else if(index2 < len2) {
assert(index1 == len1);
copy(from2[index2..len2], buf[bufIndex..len1 + len2]);
}
} else {
// Fall back to the obvious generic impl.
while(!from1.empty && !from2.empty) {
if(comp(from2.front, from1.front)) {
buf.put(from2.front);
from2.popFront();
} else {
buf.put(from1.front);
from1.popFront();
}
}
if(!from1.empty) {
assert(from2.empty);
copy(from1, buf);
} else if(!from2.empty) {
assert(from1.empty);
copy(from2, buf);
}
}
}
unittest {
auto from1 = [1, 2, 4, 8, 16, 32];
auto from2 = [2, 4, 6, 8, 10, 12];
auto buf = new int[from1.length + from2.length];
merge(from1, from2, buf);
assert(buf == [1, 2, 2, 4, 4, 6, 8, 8, 10, 12, 16, 32]);
}
void parallelMergeInPlace(alias pred = "a < b", R)(
R range,
size_t middle,
size_t minParallel = 1024,
TaskPool pool = null
) {
if(pool is null) pool = taskPool;
immutable rlen = range.length;
alias binaryFun!(pred) comp;
static size_t largestLess(T)(T[] data, T value) {
return assumeSorted!(comp)(data).lowerBound(value).length;
}
static size_t smallestGr(T)(T[] data, T value) {
return data.length -
assumeSorted!(comp)(data).upperBound(value).length;
}
if (range.length < 2 || middle == 0 || middle == range.length) {
return;
}
if (range.length == 2) {
if(comp(range[1], range[0])) {
swap(range[0], range[1]);
}
return;
}
size_t half1, half2;
if (middle > range.length - middle) {
half1 = middle / 2;
auto pivot = range[half1];
half2 = largestLess(range[middle..rlen], pivot);
} else {
half2 = (range.length - middle) / 2;
auto pivot = range[half2 + middle];
half1 = smallestGr(range[0..middle], pivot);
}
bringToFront(range[half1..middle], range[middle..middle + half2]);
size_t newMiddle = half1 + half2;
auto left = range[0..newMiddle];
auto right = range[newMiddle..range.length];
if(left.length >= minParallel) {
auto leftTask = scopedTask!(parallelMergeInPlace!(pred, R))
(left, half1, minParallel, pool);
taskPool.put(leftTask);
parallelMergeInPlace!(pred, R)
(right, half2 + middle - newMiddle, minParallel, pool);
leftTask.yieldForce();
} else {
parallelMergeInPlace!(pred, R)(left, half1, minParallel, pool);
parallelMergeInPlace!(pred, R)
(right, half2 + middle - newMiddle, minParallel, pool);
}
}
unittest {
auto arr = new int[10_000];
// Make sure serial and parallel both work by bypassing parallelism
// by making minParallel huge.
foreach(minParallel; [64, 20_000]) {
copy(iota(0, 10_000, 2), arr[0..5_000]);
copy(iota(1, 10_000, 2), arr[5_000..$]);
parallelMergeInPlace(arr, 5_000, minParallel);
assert(equal(arr, iota(10_000)), to!string(minParallel));
}
}
// In a few implementations we need to create custom ranges to be reduced.
// std.parallelism.reduce checks for a random access range to conform to
// Phobos conventions but only actually uses opIndex and length.
// This mixin adds stubs of the other primitives to pass
// isRandomAccessRange.
//
// This returns a string instead of using mixin templates to get around some
// weird forward referencing issues.
private template dummyRangePrimitives(string elemType) {
enum string dummyRangePrimitives =
elemType ~ q{ front() @property { assert(0); }
} ~ elemType ~ q{ back() @property { assert(0); }
void popFront() { assert(0); }
void popBack() @property { assert(0); }
typeof(this) opSlice(size_t foo, size_t bar) { assert(0); }
typeof(this) save() { assert(0); }
bool empty() @property { assert(0); }
};
}
CommonType!(ElementType!(Range1),ElementType!(Range2))
parallelDotProduct(Range1, Range2)(
Range1 a,
Range2 b,
TaskPool pool = null,
size_t workUnitSize = size_t.max
) if(isFloatingPoint!(ElementType!Range1) && isFloatingPoint!(ElementType!Range2)
&& isRandomAccessRange!Range1 && isRandomAccessRange!Range2
&& hasLength!Range1 && hasLength!Range2
) in {
assert(a.length == b.length);
} body {
if(pool is null) pool = taskPool;
if(workUnitSize == size_t.max) {
workUnitSize = pool.defaultWorkUnitSize(a.length);
}
alias typeof(return) F;
static F doSlice(T)(T tuple) {
return std.numeric.dotProduct(tuple[0], tuple[1]);
}
auto chunks1 = std.range.chunks(a, workUnitSize);
auto chunks2 = std.range.chunks(a, workUnitSize);
auto chunkPairs = zip(chunks1, chunks2);
auto dots = map!doSlice(chunkPairs);
return taskPool.reduce!"a + b"(cast(F) 0, dots, 1);
}
unittest {
auto a = new double[10_000];
auto b = new double[10_000];
foreach(i, ref elem; a) {
elem = i;
b[i] = i;
}
auto serial = std.numeric.dotProduct(a, b);
auto parallel = parallelDotProduct(a, b, taskPool);
assert(approxEqual(serial, parallel), text(serial, ' ', parallel));
}
size_t parallelCount(alias pred = "a == b", Range, E)
(Range r, E value, TaskPool pool = null, size_t workUnitSize = size_t.max)
if(isRandomAccessRange!Range && hasLength!Range) {
if(pool is null) pool = taskPool;
if(workUnitSize == size_t.max) {
workUnitSize = pool.defaultWorkUnitSize(r.length);
}
static struct MapPred {
Range r;
E value;
mixin(dummyRangePrimitives!"size_t");
size_t length() @property {
return r.length;
}
size_t opIndex(size_t index) {
return (binaryFun!pred(r[index], value)) ? 1 : 0;
}
}
return taskPool.reduce!"a + b"(
cast(size_t) 0, MapPred(r, value), workUnitSize
);
}
size_t parallelCount(alias pred = "true", Range)
(Range r, TaskPool pool = null, size_t workUnitSize = size_t.max)
if(isRandomAccessRange!Range && hasLength!Range) {
if(pool is null) pool = taskPool;
if(workUnitSize == size_t.max) {
workUnitSize = pool.defaultWorkUnitSize(r.length);
}
static size_t predToSizeT(T)(T val) {
return (unaryFun!pred(val)) ? 1 : 0;
}
return taskPool.reduce!"a + b"(cast(size_t) 0,
std.algorithm.map!predToSizeT(r), workUnitSize
);
}
unittest {
assert(parallelCount([1, 2, 1, 2, 3], 2) == 2);
assert(parallelCount!"a == 2"([1, 2, 1, 2, 3]) == 2);
}
void parallelAdjacentDifference(alias pred = "a - b", R1, R2)(
R1 input,
R2 output,
TaskPool pool = null,
size_t workUnitSize = size_t.max
) if(allSatisfy!(isRandomAccessRange, TypeTuple!(R1, R2)) &&
hasAssignableElements!(R2) &&
is(typeof(binaryFun!pred(R1.init[0], R1.init[1])) : ElementType!R2)
) {
static size_t getLength(R)(ref R range) {
static if(is(typeof(range.length) : size_t)) {
return range.length;
} else {
return size_t.max;
}
}
// getLength(output) + 1 because we need one less element in output
// than we had in input.
immutable minLen = min(getLength(input), getLength(output) + 1);
if(pool is null) pool = taskPool;
if(workUnitSize == size_t.max) {
workUnitSize = pool.defaultWorkUnitSize(minLen - 1);
}
// Using parallel foreach to iterate over individual elements is too
// slow b/c of delegate overhead for such fine grained parallelism.
// Use parallel foreach to iterate over slices and handle them serially.
auto sliceStarts = iota(0, minLen - 1, workUnitSize);
foreach(startIndex; pool.parallel(sliceStarts, 1)) {
immutable endIndex = min(startIndex + workUnitSize, minLen - 1);
// This avoids some indirection and seems to be faster.
auto ip = input;
auto op = output;
foreach(i; startIndex..endIndex) {
op[i] = binaryFun!pred(ip[i + 1], ip[i]);
}
}
}
unittest {
auto input = [1, 2, 4, 8, 16, 32];
auto output = new int[5];
parallelAdjacentDifference(input, output);
assert(output == [1, 2, 4, 8, 16]);
}
bool parallelEqual(alias pred = "a == b", R1, R2)(
R1 range1,
R2 range2,
size_t workUnitSize = 2000,
TaskPool pool = null
) if(isRandomAccessRange!R1 && isRandomAccessRange!R2 &&
hasLength!R1 && hasLength!R2) {
if(range1.length != range2.length) return false;
immutable len = range1.length;
if(pool is null) pool = taskPool;
immutable nThreads = pool.size + 1;
if(nThreads == 1) return std.algorithm.equal!pred(range1, range2);
auto chunks1 = std.range.chunks(range1, workUnitSize);
auto chunks2 = std.range.chunks(range2, workUnitSize);
assert(chunks1.length == chunks2.length);
immutable nChunks = chunks1.length;
bool ret = true;
size_t currentChunkIndex = size_t.max;
foreach(threadId; parallel(iota(nThreads), 1)) {
while(true) {
immutable myChunkIndex = atomicOp!"+="(currentChunkIndex, 1);
if(myChunkIndex >= nChunks) break;
auto myChunk1 = chunks1[myChunkIndex];
auto myChunk2 = chunks2[myChunkIndex];
if(!std.algorithm.equal!pred(myChunk1, myChunk2)) {
atomicStore(ret, false);
break;
}
if(!atomicLoad(ret)) break;
}
}
return ret;
}
unittest {
assert(parallelEqual([1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 6], 3));
assert(!parallelEqual([1, 2, 3, 4, 5, 6], [1, 3, 3, 4, 5, 6], 3));
assert(!parallelEqual([1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 7], 3));
}
/+
void parallelPrefixSum(alias pred = "a + b", R1, R2)(
R1 input,
R2 output,
size_t workUnitSize = 1_024,
TaskPool pool = null
) {
enforce(input.length == output.length, format(
"input.length must equal output.length for parallelPrefixSum. " ~
"(Got: input.length = %d, output.length = %d).",
input.length, output.length
);
alias binaryFun!pred fun;
if(pool is null) pool = taskPool;
if(workUnitSize & 1) workUnitSize++; // It can't be odd.
if(workUnitSize > input.length) workUnitSize = input.length;
// TODO: Use a better temporary allocation scheme than the GC.
auto temp = new ElementType!R2[output.length];
size_t tempStart = 0;
static void impl(R1 input, typeof(temp) output, size_t workUnitSize) {
auto len = input.length;
if(len & 1) len--; // Handle odd stuff at the end.
auto steps = iota(0, len, workUnitSize);
if(steps.length > 1) {
foreach(stepStart; parallel(steps, 1)) {
immutable stepEnd = min(stepStart + workUnitSize, len);
for(size_t i = 0; i < stepEnd; i += 2) {
output[i / 2] = input[i] + input[i + 1];
}
}
} else {
// Avoid some constant overhead.
for(size_t i = 0; i < len; i += 2) {
output[i / 2] = input[i] + input[i + 1];
}
}
impl(output[0..(len - 1) +/
Range parallelFind(alias pred = "a == b", Range, E)(
Range haystack,
E needle,
size_t workUnitSize = 250,
TaskPool pool = null
) if(isRandomAccessRange!Range && hasLength!Range) {
bool newPred(ElementType!Range elem) {
return binaryFun!pred(elem, needle);
}
return parallelFind!newPred(haystack, workUnitSize, pool);
}
unittest {
auto foo = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6,
2, 6, 4, 3, 3, 8, 3, 2, 7, 9, 5, 0, 2, 8, 8, 4, 1, 9, 7, 1, 6];
assert(parallelFind(foo, 9) == foo[5..$]);
assert(parallelFind(foo, 1) == foo[1..$]);
assert(parallelFind(foo, 6) == foo[7..$]);
}
Range parallelFind(alias pred, Range)(
Range haystack,
size_t workUnitSize = 250,
TaskPool pool = null
) if(isRandomAccessRange!Range && hasLength!Range) {
if(pool is null) pool = taskPool;
immutable nThreads = pool.size + 1;
if(nThreads == 1) return std.algorithm.find!(pred, Range)(haystack);
immutable len = haystack.length;
// This variable stores the index of the earliest hit found so far.
shared size_t minHitIndex = len;
// This function atomically sets minHitIndex to newIndex iff newIndex <
// minHitIndex. The nature of minHitIndex is that it can never get smaller,
// so if newIndex is not smaller than minHitIndex, we don't need to do
// a CAS.
void atomicMinHitIndex(size_t newIndex) {
size_t old = void;
do {
old = atomicLoad!(msync.raw)(minHitIndex);
if(newIndex >= old) return;
} while(!cas(&minHitIndex, old, newIndex));
}
size_t sliceIndex = size_t.max;
foreach(threadId; parallel(iota(nThreads), 1)) {
while(true) {
immutable myIndex = atomicOp!"+="(sliceIndex, 1);
immutable sliceStart = sliceIndex * workUnitSize;
if(sliceStart >= len) break;
if(atomicLoad(minHitIndex) < sliceStart) break;
immutable sliceEnd = min(len, (sliceIndex + 1) * workUnitSize);
foreach(i; sliceStart..sliceEnd) {
if(unaryFun!pred(haystack[i])) {
atomicMinHitIndex(i);
break;
}
}
}
}
return haystack[minHitIndex..len];
}
unittest {
auto foo = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6,
2, 6, 4, 3, 3, 8, 3, 2, 7, 9, 5, 0, 2, 8, 8, 4, 1, 9, 7, 1, 6];
assert(parallelFind!"a == 9"(foo) == foo[5..$]);
assert(parallelFind!"a == 1"(foo) == foo[1..$]);
assert(parallelFind!"a == 6"(foo) == foo[7..$]);
}
Range parallelAdjacentFind(alias pred = "a == b", Range)(
Range range,
size_t workUnitSize = 250,
TaskPool pool = null
) if(isRandomAccessRange!Range && hasLength!Range) {
immutable len = range.length;
if(len < 2) {
return range[len..len];
}
bool nextEqual(size_t i) {
assert(i < len - 1);
return binaryFun!pred(range[i], range[i + 1]);
}
auto indices = parallelFind!nextEqual(iota(len - 1), workUnitSize, pool);
if(!indices.length) return range[len..len];
return range[indices.front..len];
}
unittest {
auto foo = [8, 6, 7, 5, 3, 0, 9, 3, 6, 2, 4, 3, 6, 8, 8, 0, 9, 6];
auto bar = iota(666);
assert(parallelAdjacentFind(foo) == [8, 8, 0, 9, 6]);
assert(parallelAdjacentFind(bar).empty);
}
string parallelArrayOp
(string workUnitSize = "1_000", string pool = "taskPool")
(string[] operation...) {
string[] evens, odds;
foreach(i, op; operation) {
if(i & 1) {
odds ~= '"' ~ op ~ '"';
} else {
evens ~= op;
}
}
return "arrayOpImpl!(" ~ std.array.join(odds, ", ") ~
").parallelArrayOp(" ~
std.array.join(evens, ", ") ~ ", " ~ workUnitSize ~ ", " ~
pool ~ ");";
}
template arrayOpImpl(ops...) {
// Code generation function for parallelArrayOp.
private string generateChunkCode(Operands...)() {
static assert(isArray!(Operands[0]),
"Cannot do parallel array ops if the lhs of the expression is " ~
"not an array."
);
import std.string;
string ret = `
immutable len = operands[0].length;
immutable chunkStart = myChunk * workUnitSize;
if(chunkStart >= len) break;
immutable chunkEnd = min(chunkStart + workUnitSize, len);
operands[0][chunkStart..chunkEnd] `;
assert(std.string.indexOf(ops[0], "=") >-1,
"Cannot do a parallel array op where the second argument is not " ~
"some kind of assignment statement. (Got: " ~ ops[0] ~ ")."
);
foreach(i, op; ops) {
ret ~= op;
ret ~= " operands[" ~ to!string(i + 1) ~ "]";
if(isArray!(Operands[i + 1])) {
ret ~= "[chunkStart..chunkEnd] ";
}
}
ret ~= ';';
return ret;
}
void parallelArrayOp(Operands...)(
Operands operands,
size_t workUnitSize,
TaskPool pool
) if(Operands.length >= 2) {
if(pool is null) pool = taskPool;
immutable nThread = pool.size + 1;
size_t workUnitIndex = size_t.max;
foreach(thread; parallel(iota(nThread), 1)) {
while(true) {
immutable myChunk = atomicOp!"+="(workUnitIndex, 1);
enum code = generateChunkCode!(Operands)();
mixin(code);
}
}
}
}
unittest {
{
auto lhs = [1, 2, 3, 4, 5, 6, 7, 9, 10, 11];
auto lhs2 = lhs.dup;
mixin(parallelArrayOp!("2")("lhs[]", "*=", "2"));
lhs2[] *= 2;
assert(equal(lhs, lhs2), text(lhs));
}
{
double[] lhs = new double[7];
double[] o1 = [8, 6, 7, 5, 3, 0, 9];
double[] o2 = [3, 1, 4, 1, 5, 9, 2];
double[] o3 = [2, 7, 1, 8, 2, 8, 1];
mixin(parallelArrayOp!"2"(
"lhs[]", "=", "o1[]", "*", "o2[]", "+", "2", "*", "o3[]"
));
assert(lhs == [28, 20, 30, 21, 19, 16, 20]);
}
}
//////////////////////////////////////////////////////////////////////////////
// Benchmarks
//////////////////////////////////////////////////////////////////////////////
import std.random, std.datetime, std.exception, std.numeric;
void mergeBenchmark() {
enum N = 8192;
enum nIter = 1000;
auto a = new float[N];
auto b = new float[N];
auto buf = new float[a.length + b.length];
foreach(ref elem; chain(a, b)) elem = uniform(0f, 1f);
sort(a);
sort(b);
auto sw = StopWatch(AutoStart.yes);
foreach(i; 0..nIter) merge(a, b, buf);
writeln("Serial Merge: ", sw.peek.msecs);
assert(equal(buf, sort(a ~ b)));
sw.reset();
foreach(i; 0..nIter) parallelMerge(a, b, buf, 2048);
writeln("Parallel Merge: ", sw.peek.msecs);
assert(equal(buf, sort(a ~ b)));
}
void mergeInPlaceBenchmark() {
enum N = 8192;
enum nIter = 100;
auto ab = new float[2 * N];
auto a = ab[0..$ / 2];
auto b = ab[$ / 2..$];
foreach(ref elem; ab) elem = uniform(0f, 1f);
auto sw = StopWatch(AutoStart.no);
foreach(i; 0..nIter) {
randomShuffle(ab);
sort(a);
sort(b);
sw.start();
// Disable parallelism by setting minParallel to be bigger than N.
parallelMergeInPlace(ab, N / 2, N + 1);
sw.stop();
}
writeln("Serial In-place Merge: ", sw.peek.msecs);
sw.reset();
foreach(i; 0..nIter) {
randomShuffle(ab);
sort(a);
sort(b);
sw.start();
// Use default minParallel.
parallelMergeInPlace(ab, N / 2);
sw.stop();
}
writeln("Parallel In-place Merge: ", sw.peek.msecs);
}
void sortBenchmark() {
enum N = 32768;
enum nIter = 100;
auto a = new ushort[N];
foreach(ref elem; a) elem = uniform(cast(ushort) 0, ushort.max);
auto sw = StopWatch(AutoStart.yes);
sort(a);
writeln("Serial Sort: ", sw.peek.usecs);
enforce(isSorted(a));
randomShuffle(a);
sw.reset();
parallelSort!("a < b", sort)(a, 4096, 4096);
writeln("Parallel Sort: ", sw.peek.usecs);
enforce(isSorted(a));
}
void dotProdBenchmark() {
enum n = 100_000;
enum nIter = 100;
auto a = new float[n];
auto b = new float[n];
foreach(ref num; chain(a, b)) {
num = uniform(0.0, 1.0);
}