forked from Pfed-prog/vercel-python
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathindex.py
77 lines (58 loc) · 2.36 KB
/
index.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
"""nonempty"""
from os.path import join
import json
from datetime import datetime
import requests
from flask import Flask, request, jsonify, send_file
import joblib
import pandas as pd
app = Flask(__name__)
URL ='https://api.thegraph.com/subgraphs/name/uniswap/uniswap-v3'
FORWARD_STEPS = 10
def get_data(address):
"""
queries the data for the token
address: address of the Uniswap contract
"""
query = f"""
{{token (id: "{address}"){{tokenDayData(first:1000, skip:2) {{ priceUSD date open close high low volume volumeUSD}} }} }}
"""
response = requests.post(URL, json={'query': query}, timeout=7.5)
json_data = json.loads(response.text)
data = json_data['data']['token']['tokenDayData']
out_df = pd.DataFrame(data)
return out_df
def input_cells(latest_date, steps=FORWARD_STEPS):
"""
outputs cells that we use to input predictions
"""
empty_predictions = pd.DataFrame({'date':[n*86400+latest_date for n in range(1, steps+1)]})
return empty_predictions
def time_features(df):
"""generate time features"""
df["utc"] = df.date.apply(lambda x: datetime.utcfromtimestamp(x))
df['day'] = df.utc.apply(lambda time: time.day)
df["weekday"] = df.utc.apply(lambda time: time.dayofweek)
df['month'] = df.utc.apply(lambda time: time.month)
df['year'] = df.utc.apply(lambda time: time.year).astype("category")
return df
@app.route("/", methods=["GET","POST"])
def home():
"""prediction"""
if request.args.get('a'):
address = request.args.get('a')
else:
address = "0x1f9840a85d5af5bf1d1762f925bdaddc4201f984"
df_data = get_data(address)
empty_predictions = input_cells(df_data.date.values[-1:][0])
df_all = pd.concat([df_data, empty_predictions]).reset_index(drop=True)
df_withfeatures = time_features(df_all)
columns = ['open', 'close', 'high', 'low', 'volume', 'volumeUSD']
for column in columns:
df_withfeatures[column] = df_withfeatures[column].shift(FORWARD_STEPS)
features = ['priceUSD', 'date', 'open', 'close', 'high', 'low', 'volume',
'volumeUSD', 'day', 'weekday', 'month', 'year']
df_withfeatures = df_withfeatures.iloc[-FORWARD_STEPS:][features]
#for column in ['day', 'weekday', 'month', 'year']:
# df_all[column] = df_all[column].astype(int)
return df_withfeatures.to_html(header="true", table_id="table")