-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_hand_KERAS.py
47 lines (35 loc) · 1.45 KB
/
train_hand_KERAS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import csv
import numpy as np
import tensorflow as tf
from sklearn.model_selection import train_test_split
dataset = 'data/hand/data.csv'
model_save_path = 'hand.hdf5'
NUM_CLASSES = 13
X_dataset = np.loadtxt(dataset, delimiter=',', dtype='float32', usecols=list(range(1, (21 * 2) + 1)))
y_dataset = np.loadtxt(dataset, delimiter=',', dtype='int32', usecols=(0))
X_train, X_test, y_train, y_test = train_test_split(X_dataset, y_dataset, train_size=0.75, random_state=42)
model = tf.keras.models.Sequential([
tf.keras.layers.Input((21 * 2,)),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(30, activation='relu'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(15, activation='relu'),
tf.keras.layers.Dense(NUM_CLASSES, activation='softmax')
])
model.summary()
cp_callback = tf.keras.callbacks.ModelCheckpoint(model_save_path, verbose=1, save_weights_only=False)
es_callback = tf.keras.callbacks.EarlyStopping(patience=20, verbose=1)
# Model compilation
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(X_train,
y_train,
epochs=1000,
batch_size=128,
validation_data=(X_test, y_test),
callbacks=[cp_callback, es_callback])
model = tf.keras.models.load_model(model_save_path)
# Save as a model dedicated to inference
model.save(model_save_path, include_optimizer=False)