-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathffCudaNn.h
300 lines (205 loc) · 5.79 KB
/
ffCudaNn.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
#pragma once
#include <vector>
namespace ff
{
class CudaNn;
class CudaTensor
{
public:
CudaTensor();
CudaTensor(int d0, int d1 = 1, int d2 = 1, int d3 = 1);
CudaTensor(const CudaTensor& rhs);
~CudaTensor();
CudaTensor& operator=(const CudaTensor& rhs);
void ResetTensor(int d0, int d1 = 1, int d2 = 1, int d3 = 1);
void Reshape(int d0, int d1 = 1, int d2 = 1, int d3 = 1);
void SetRandom(const float multiplier = 1.0f);
void SetZero();
void SetDropoutMask(float zeroRatio);
void PushToGpu();
void PullFromGpu();
public:
int _d0, _d1, _d2, _d3, _dataSize;
std::vector<float> _data;
int _dataGpuSize;
float* _dataGpu;
};
class CudaLayer
{
public:
CudaLayer(CudaNn* nn) : _nn(nn) {}
virtual ~CudaLayer() {}
virtual const CudaTensor* Forward(const CudaTensor*) = 0;
virtual const CudaTensor* Backward(const CudaTensor*, const int layerIndex) = 0;
virtual void UpdateWs(float learningRate, float beta1, float beta2, float beta1t, float beta2t) {}
virtual void Pull() {}
public:
CudaNn* _nn;
};
class FcLayer : public CudaLayer
{
public:
FcLayer(CudaNn* nn, int inDim, int outDit);
const CudaTensor* Forward(const CudaTensor*) override;
const CudaTensor* Backward(const CudaTensor*, const int layerIndex) override;
void UpdateWs(float learningRate, float beta1, float beta2, float beta1t, float beta2t) override;
void Pull() override;
public:
const CudaTensor* _pX;
CudaTensor _xG;
CudaTensor _w;
CudaTensor _wG;
CudaTensor _wG_m;
CudaTensor _wG_v;
CudaTensor _b;
CudaTensor _bG;
CudaTensor _bG_m;
CudaTensor _bG_v;
CudaTensor _y;
};
class Conv2dLayer : public CudaLayer
{
public:
Conv2dLayer(CudaNn* nn, int kernelSize, int nInChannel, int nOutChannel, int stride, int padding);
const CudaTensor* Forward(const CudaTensor*) override;
const CudaTensor* Backward(const CudaTensor*, const int layerIndex) override;
void UpdateWs(float learningRate, float beta1, float beta2, float beta1t, float beta2t) override;
void Pull() override;
public:
int _kernelSize, _stride, _padding;
const CudaTensor* _pX;
CudaTensor _xG;
CudaTensor _w;
CudaTensor _wG;
CudaTensor _wG_m;
CudaTensor _wG_v;
CudaTensor _b;
CudaTensor _bG;
CudaTensor _bG_m;
CudaTensor _bG_v;
CudaTensor _y;
};
class ReluLayer : public CudaLayer
{
public:
ReluLayer(CudaNn* nn) : CudaLayer(nn) {}
const CudaTensor* Forward(const CudaTensor*) override;
const CudaTensor* Backward(const CudaTensor*, const int layerIndex) override;
void Pull() override;
public:
const CudaTensor* _pX;
CudaTensor _xRelu;
CudaTensor _xG;
};
class MaxPoolLayer : public CudaLayer
{
public:
MaxPoolLayer(CudaNn* nn) : CudaLayer(nn) {}
const CudaTensor* Forward(const CudaTensor*) override;
const CudaTensor* Backward(const CudaTensor*, const int layerIndex) override;
void Pull() override;
public:
const CudaTensor* _pX;
CudaTensor _maxIndex;
CudaTensor _xG;
CudaTensor _y;
};
class BatchNorm2dLayer : public CudaLayer
{
public:
BatchNorm2dLayer(CudaNn* nn, int inDim);
const CudaTensor* Forward(const CudaTensor*) override;
const CudaTensor* Backward(const CudaTensor*, const int layerIndex) override;
void UpdateWs(float learningRate, float beta1, float beta2, float beta1t, float beta2t) override;
void Pull() override;
public:
const CudaTensor* _pX;
CudaTensor _meanAndVariance;
CudaTensor _meanAndVarianceAcc;
CudaTensor _meanAndVarianceG;
CudaTensor _w;
CudaTensor _wG;
CudaTensor _wG_m;
CudaTensor _wG_v;
CudaTensor _xG;
CudaTensor _xHat;
CudaTensor _y;
int _accCount;
};
class DropoutLayer : public CudaLayer
{
public:
DropoutLayer(CudaNn* nn, float dropoutRate) : CudaLayer(nn), _crossCheck(0), _dropoutRate(dropoutRate) {}
const CudaTensor* Forward(const CudaTensor*) override;
const CudaTensor* Backward(const CudaTensor*, const int layerIndex) override;
void Pull() override;
public:
int _crossCheck;
float _dropoutRate;
CudaTensor _dropoutMask;
CudaTensor _xDropped;
CudaTensor _yGdropped;
};
class SoftmaxLayer : public CudaLayer
{
public:
SoftmaxLayer(CudaNn* nn) : CudaLayer(nn) {}
const CudaTensor* Forward(const CudaTensor*) override;
const CudaTensor* Backward(const CudaTensor*, const int layerIndex) override;
void Pull() override;
public:
CudaTensor _softmax;
CudaTensor _lossG;
};
class SumOfSquaresLayer : public CudaLayer
{
public:
SumOfSquaresLayer(CudaNn* nn) : CudaLayer(nn), _pY(nullptr) {}
const CudaTensor* Forward(const CudaTensor*) override;
const CudaTensor* Backward(const CudaTensor*, const int layerIndex) override;
void Pull() override;
public:
const CudaTensor* _pY;
CudaTensor _yG;
};
class QuatNormLayer : public CudaLayer
{
public:
QuatNormLayer(CudaNn* nn) : CudaLayer(nn) {}
const CudaTensor* Forward(const CudaTensor*) override;
const CudaTensor* Backward(const CudaTensor*, const int layerIndex) override;
void Pull() override;
public:
const CudaTensor* _pX;
CudaTensor _y;
CudaTensor _xG;
};
class CudaNn
{
public:
CudaNn();
~CudaNn();
bool InitializeCudaNn(const char* desc);
bool AddConv2d(int kernelSize, int nInChannel, int nOutChannel, int stride, int padding);
bool AddMaxPool();
bool AddFc(int inDim, int outDim);
bool AddRelu();
bool AddBatchNorm2d(int inDim);
bool AddQuatNorm();
bool AddDropout(float dropoutRatio);
bool AddSoftmax();
bool AddSumOfSquares();
const CudaTensor* Forward(const CudaTensor* x, bool train = false);
void Backward(const CudaTensor* yLabel);
void UpdateWs(float learningRate);
bool IsTraining() { return _train; }
void Pull();
public:
std::vector<CudaLayer*> _layers;
const float kBeta1 = 0.9f;
const float kBeta2 = 0.999f;
float _beta1t;
float _beta2t;
bool _train;
};
} // namespace ff