forked from NhatHoang2002/ToXCL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_ToXCL.py
489 lines (389 loc) · 22.8 KB
/
train_ToXCL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
import csv
import datetime
import json
import os
import random
import time
from argparse import ArgumentParser
from ast import literal_eval
import datasets
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from eval_metrics import (compute_classification_scores,
compute_generation_scores)
from torch.utils.data import (DataLoader, Dataset, RandomSampler,
SequentialSampler)
from tqdm import tqdm
from transformers import (AdamW, AutoModelForSeq2SeqLM,
AutoModelForSequenceClassification, AutoTokenizer,
get_linear_schedule_with_warmup)
seed_val = 42
random.seed(seed_val)
np.random.seed(seed_val)
torch.manual_seed(seed_val)
torch.cuda.manual_seed_all(seed_val)
id2label = {0: "normal", 1: "hate"}
label2id = {"normal": 0, "hate": 1}
def format_time(elapsed):
return str(datetime.timedelta(seconds=int(round((elapsed)))))
class ToXCL(nn.Module):
def __init__(self, decoder_model, decoder_tokenizer, teacher_model, hidden_size=768, num_labels=2):
super(ToXCL, self).__init__()
self.device = decoder_model.device
self.decoder_model = decoder_model
self.teacher_model = teacher_model
for param in self.teacher_model.parameters():
param.requires_grad = False
self.decoder_tokenizer = decoder_tokenizer
self.num_labels = num_labels
self.classifier = nn.Linear(hidden_size, num_labels)
self.loss_fct = nn.BCELoss()
self.kl_loss = nn.KLDivLoss(reduction="batchmean", log_target=True)
self.activation = nn.Softmax(dim=-1)
def get_decoder_model(self):
return self.decoder_model
def get_decoder_tokenizer(self):
return self.decoder_tokenizer
def classify(self, input_ids, attention_mask):
outputs = self.decoder_model(input_ids=input_ids, attention_mask=attention_mask, labels=input_ids)
last_hidden_state = outputs.encoder_last_hidden_state
cls_token_emb = torch.mean(last_hidden_state, dim=1).squeeze()
logits = self.classifier(cls_token_emb).squeeze().to(self.device)
logits = logits.view(-1, self.num_labels)
return self.activation(logits)
def generate(self, **kwargs):
return self.decoder_model.generate(**kwargs)
def forward(self, input_ids=None, lm_labels=None, cls_labels=None, attention_mask=None, teacher_input_ids=None, teacher_labels=None, teacher_attention_mask=None, alpha=0.2):
lm_outputs = self.decoder_model(input_ids, attention_mask=attention_mask, labels=lm_labels)
last_hidden_state = lm_outputs.encoder_last_hidden_state
cls_token_emb = torch.mean(last_hidden_state, dim=1).squeeze()
student_logits = self.classifier(cls_token_emb).squeeze().to(self.device)
student_logits = student_logits.view(-1, self.num_labels)
with torch.no_grad():
teacher_outputs = self.teacher_model(teacher_input_ids, labels=teacher_labels, attention_mask=teacher_attention_mask)
teacher_logits = teacher_outputs.logits
student_output = self.activation(student_logits)
teacher_output = self.activation(teacher_logits)
assert torch.all(torch.isclose(torch.sum(student_output, dim=1), torch.tensor(1.0), rtol=1e-5)) and torch.all(torch.isclose(torch.sum(teacher_output, dim=1), torch.tensor(1.0), rtol=1e-5))
assert torch.all(student_output >= 0) and torch.all(teacher_output >= 0)
student_output = self.activation(student_logits)
cls_loss = self.loss_fct(student_output, alpha*teacher_output + (1-alpha)*cls_labels.float())
kl_loss = self.kl_loss(student_output, teacher_output)
return lm_outputs, student_output, cls_loss, kl_loss
def save_checkpoint(self, output_dir, is_best=False, optimizer=None, scheduler=None, training_stats=None):
self.decoder_model.save_pretrained(output_dir)
self.decoder_tokenizer.save_pretrained(output_dir)
torch.save(self.classifier.state_dict(), os.path.join(output_dir, "classifier.pt"))
if not is_best:
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
with open(os.path.join(output_dir, "training_model_stats.json"), "w") as file:
json.dump(training_stats, file)
print("Successfully saved checkpoint.")
def load_checkpoint(self, output_dir, optimizer=None, scheduler=None):
self.decoder_model = AutoModelForSeq2SeqLM.from_pretrained(output_dir).to(self.device)
self.classifier.load_state_dict(torch.load(os.path.join(output_dir, "classifier.pt")))
if optimizer is not None:
optimizer.load_state_dict(torch.load(os.path.join(output_dir, "optimizer.pt")))
scheduler.load_state_dict(torch.load(os.path.join(output_dir, "scheduler.pt")))
print("Successfully loaded checkpoint.")
class ToxclDataset(Dataset):
def __init__(self, data):
self.inputs = ["summarize: " + doc for doc in data["document"]]
self.outputs = data["summary"]
encoded_labels = [label2id[i] for i in data["label"]]
self.student_cls_labels = [[1,0] if int(i)==0 else [0,1] for i in encoded_labels]
self.teacher_cls_labels = [int(i) for i in encoded_labels]
def __len__(self):
return len(self.inputs)
def __getitem__(self, idx):
output = self.outputs[idx]
try: # SBIC dataset
output = literal_eval(output)
except: # IHC datset
output = [output]
label = np.random.choice(output)
return dict(
document=self.inputs[idx],
label=label,
student_cls_labels=self.student_cls_labels[idx],
teacher_cls_labels=self.teacher_cls_labels[idx]
)
def main(args):
# (0) Initialization
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
epochs = 2
max_length = 256
warmup_steps = 100
decoder_tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
decoder_model = AutoModelForSeq2SeqLM.from_pretrained(args.model_name_or_path).to(device)
teacher_tokenizer = AutoTokenizer.from_pretrained(args.teacher_name_or_path)
teacher_model = AutoModelForSequenceClassification.from_pretrained(args.teacher_name_or_path)
# (1.1) Read data
train_data = []
valid_data = []
with open(args.train_file) as file:
csvreader = csv.reader(file)
_ = next(csvreader)
for row in csvreader:
train_data.append({
"document": row[args.text_column_num].strip(),
"label": row[2].strip(),
"summary": row[3].strip(),
})
with open(args.valid_file) as file:
csvreader = csv.reader(file)
_ = next(csvreader)
for row in csvreader:
valid_data.append({
"document": row[args.text_column_num].strip(),
"label": row[2].strip(),
"summary": row[3].strip(),
})
train_data = datasets.Dataset.from_pandas(pd.DataFrame(data=train_data))
valid_data = datasets.Dataset.from_pandas(pd.DataFrame(data=valid_data))
# (1.2) Tokenize data
def collate_fn(batch):
input_texts = [item["document"] for item in batch]
label_texts = [item["label"] for item in batch]
new_batch = decoder_tokenizer(input_texts, max_length=max_length, padding="max_length", return_tensors="pt", truncation=True)
labels = decoder_tokenizer(label_texts, max_length=max_length, padding="max_length", return_tensors="pt", truncation=True).input_ids
labels[labels == decoder_tokenizer.pad_token_id] = -100
new_batch["labels"] = labels
teacher_inputs = teacher_tokenizer(input_texts, max_length=max_length, padding="max_length", return_tensors="pt", truncation=True)
new_batch["teacher_input_ids"] = teacher_inputs["input_ids"]
new_batch["teacher_attention_mask"] = teacher_inputs["attention_mask"]
new_batch["student_cls_labels"] = torch.as_tensor([item["student_cls_labels"] for item in batch])
new_batch["teacher_cls_labels"] = torch.as_tensor([item["teacher_cls_labels"] for item in batch])
return new_batch
# (1.3) Initialize datasets
train_dataset = ToxclDataset(train_data)
train_dataloader = DataLoader(
train_dataset, # The training samples.
sampler=RandomSampler(train_dataset), # Select batches randomly
batch_size=args.train_batch_size, # Trains with this batch size.
collate_fn=collate_fn,
num_workers=8
)
valid_dataset = ToxclDataset(valid_data)
validation_dataloader = DataLoader(
valid_dataset, # The validation samples.
sampler=SequentialSampler(valid_dataset), # Pull out batches sequentially.
batch_size=args.valid_batch_size, # Evaluate with this batch size.
collate_fn=collate_fn,
num_workers=8
)
print('{:>5,} training samples'.format(len(train_data)))
print('{:>5,} validation samples'.format(len(valid_data)))
# (2) Initialize model, optimizer, scheduler
model = ToXCL(decoder_model, decoder_tokenizer, teacher_model).to(device)
optimizer = AdamW(model.parameters(), lr=args.learning_rate, eps=1e-8)
total_steps = (len(train_dataloader) * epochs) // args.accumulation_steps
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=total_steps)
# (3) Train ToXCL
total_t0 = time.time()
training_stats = []
best_result = 100 # lm_loss by default
num_step = 0
skipped_steps = 0
if args.resume_training:
model.load_checkpoint(args.output_dir, optimizer, scheduler)
with open(os.path.join(args.output_dir, "training_model_stats.json"), "r") as file:
training_stats = json.load(file)
best_result = training_stats[-1]['Best result']
skipped_steps = training_stats[-1]['Step']
num_step = skipped_steps
best_checkpoint = model
for epoch_i in range(0, epochs):
# ========================================
# Training
# ========================================
print("")
print('======== Epoch {:} / {:} ========'.format(epoch_i + 1, epochs))
print('Training...')
t0 = time.time()
total_train_lm_loss = 0
total_train_cls_loss = 0
total_train_kl_loss = 0
model.train()
train_loop = tqdm(enumerate(train_dataloader), total=len(train_dataloader), leave=True)
for train_step, batch in train_loop:
train_loop.update()
num_step += 1
# if num_step <= skipped_steps: continue
b_input_ids = batch.get("input_ids").to(device)
b_lm_labels = batch.get("labels").to(device)
b_attention_mask = batch.get("attention_mask").to(device)
b_cls_labels = batch.get("student_cls_labels").to(device)
b_teacher_input_ids = batch.get("teacher_input_ids").to(device)
b_teacher_masks = batch.get("teacher_attention_mask").to(device)
b_teacher_cls = batch.get("teacher_cls_labels").to(device)
model.zero_grad()
lm_outputs, cls_outputs, cls_loss, kl_loss = model(b_input_ids,
lm_labels=b_lm_labels, cls_labels = b_cls_labels,
attention_mask = b_attention_mask,
teacher_input_ids=b_teacher_input_ids,
teacher_labels=b_teacher_cls,
teacher_attention_mask=b_teacher_masks)
if args.no_teacher:
kl_loss = torch.zeros_like(kl_loss)
lm_loss = lm_outputs[0]
batch_loss_lm = lm_loss.item()
batch_loss_cls = cls_loss.item()
batch_loss_kl = kl_loss.item()
total_train_lm_loss += batch_loss_lm
total_train_cls_loss += batch_loss_cls
total_train_kl_loss += batch_loss_kl
overall_loss = (lm_loss + 10 * cls_loss + 10 * kl_loss) / args.accumulation_steps
overall_loss.backward()
if (num_step % args.accumulation_steps == 0) or (num_step == total_steps):
optimizer.step()
optimizer.zero_grad()
scheduler.step()
if num_step >= args.eval_delay and ((num_step % args.sample_every == 0) or (num_step == total_steps)):
# Calculate the average loss over all of the batches.
avg_train_loss_lm = total_train_lm_loss / (train_step + 1)
avg_train_loss_cls = total_train_cls_loss / (train_step + 1)
avg_train_loss_kl = total_train_kl_loss / (train_step + 1)
# Measure how long this epoch took.
training_time = format_time(time.time() - t0)
print("")
print(" Average total_train_cls_loss: {0:.7f}".format(avg_train_loss_cls))
print(" Average total_train_lm_loss: {0:.7f}".format(avg_train_loss_lm))
print(" Average total_train_kl_loss: {0:.7f}".format(avg_train_loss_kl))
print(" Training epoch took: {:}".format(training_time))
# ========================================
# Validation
# ========================================
print(f"Running Validation at step {num_step}...")
eval_t0 = time.time()
model.eval()
total_eval_lm_loss = 0
total_eval_cls_loss = 0
total_eval_kl_loss = 0
epoch_cls_ground_truth = []
epoch_generation_ground_truth = []
epoch_cls_generated = []
epoch_generation_generated = []
eval_loop = tqdm(enumerate(validation_dataloader), total=len(validation_dataloader), leave=True)
for eval_step, batch in eval_loop:
eval_loop.update()
b_input_ids = batch.get("input_ids").to(device)
b_lm_labels = batch.get("labels").to(device)
b_attention_mask = batch.get("attention_mask").to(device)
b_cls_labels = batch.get("student_cls_labels").to(device)
b_teacher_input_ids = batch.get("teacher_input_ids").to(device)
b_teacher_masks = batch.get("teacher_attention_mask").to(device)
b_teacher_cls = batch.get("teacher_cls_labels").to(device)
with torch.no_grad():
lm_outputs, cls_outputs, cls_loss, kl_loss = model(input_ids=b_input_ids,
lm_labels=b_lm_labels,
cls_labels=b_cls_labels,
attention_mask=b_attention_mask,
teacher_input_ids=b_teacher_input_ids,
teacher_labels=b_teacher_cls,
teacher_attention_mask=b_teacher_masks)
cls_outputs = model.classify(input_ids=b_input_ids, attention_mask=b_attention_mask)
generated_cls = cls_outputs.tolist()
assert len(generated_cls[0]) == 2
generated_cls = [np.argmax(ele) for ele in generated_cls]
epoch_cls_generated.extend(generated_cls)
assert len(b_input_ids) == len(generated_cls)
generated_lm_texts = model.generate(
input_ids=b_input_ids,
attention_mask=b_attention_mask,
num_beams=4,
do_sample=True,
top_p=0.92,
top_k=0,
max_new_tokens=50
)
generated_lm_texts = decoder_tokenizer.batch_decode(generated_lm_texts, skip_special_tokens=True)
# Conditional Decoding Constraint
for idx in range(len(b_input_ids)):
if generated_cls[idx] == 0:
generated_lm_texts[idx] = "none"
epoch_generation_generated.extend(generated_lm_texts)
epoch_cls_ground_truth.extend(b_teacher_cls.tolist())
batch_lm_labels = b_lm_labels.detach().clone()
batch_lm_labels[batch_lm_labels == -100] = decoder_tokenizer.pad_token_id
batch_lm_labels = decoder_tokenizer.batch_decode(batch_lm_labels, skip_special_tokens=True)
epoch_generation_ground_truth.extend(batch_lm_labels)
batch_loss_lm = lm_outputs.loss.item()
batch_loss_cls = cls_loss.item()
batch_loss_kl = kl_loss.item()
total_eval_lm_loss += batch_loss_lm
total_eval_cls_loss += batch_loss_cls
total_eval_kl_loss += batch_loss_kl
eval_loop.set_postfix(loss_lm=round(total_eval_lm_loss / (eval_step+1), 5),
loss_cls=round(total_eval_cls_loss / (eval_step+1), 5),
loss_kl=round(total_eval_kl_loss / (eval_step+1), 5))
print("generated_lm_texts: ", generated_lm_texts)
print("groundtruth_lm_texts: ", batch_lm_labels)
generation_scores = compute_generation_scores(epoch_generation_ground_truth, epoch_generation_generated)
bleu = generation_scores[0]
rouge = generation_scores[1]
meteor = generation_scores[2]
bertscore = generation_scores[3]
acc, f1 = compute_classification_scores(epoch_cls_ground_truth, epoch_cls_generated)
print()
print(" Average valid LM: {0:.7f}".format(total_eval_lm_loss/len(validation_dataloader)))
print(" Average valid CLS: {0:.7f}".format(total_eval_cls_loss/len(validation_dataloader)))
print(" Average valid KL: {0:.7f}".format(total_eval_kl_loss/len(validation_dataloader)))
print(f"Epoch {epoch_i + 1} step {num_step} generation evaluations: BLEU-4: {bleu}, ROUGE-L: {rouge}, METEOR: {meteor}, BERTSCORE: {bertscore}")
print(f"Epoch {epoch_i + 1} step {num_step} classification evaluations: Acc: {acc}, F1: {f1}")
validation_time = format_time(time.time() - eval_t0)
print(f"Evaluation time: {validation_time}")
# Record all statistics at this epoch
training_stats.append({
'Step': num_step,
'Best result': best_result,
'Avg train LM loss': avg_train_loss_lm,
'Avg train CLS loss': avg_train_loss_cls,
'Avg valid KL loss': avg_train_loss_kl,
'Avg valid LM loss': total_eval_lm_loss/len(validation_dataloader),
'Avg valid CLS loss': total_eval_cls_loss/len(validation_dataloader),
'Avg valid KL loss': total_eval_kl_loss/len(validation_dataloader),
'Generation evaluation': f"BLEU-4: {bleu}, ROUGE-L: {rouge}, METEOR: {meteor}, BERTSCORE: {bertscore}",
'CLS evaluation': f"Acc: {acc}, F1: {f1}",
'Validation Time': validation_time
})
if total_eval_lm_loss/len(validation_dataloader) < best_result:
print(f"New best checkpoint at Epoch {epoch_i + 1}, Train_step {num_step}")
best_result = total_eval_lm_loss/len(validation_dataloader)
training_stats[-1]["Best result"] = best_result
best_checkpoint = model
best_checkpoint.save_checkpoint(os.path.join(args.output_dir, "best_ckpt"), is_best=True)
model.save_checkpoint(args.output_dir, is_best=False,
optimizer=optimizer, scheduler=scheduler, training_stats=training_stats)
train_loop.set_postfix(loss_lm=round(total_train_lm_loss / (train_step+1), 5),
loss_cls=round(total_train_cls_loss / (train_step+1), 5),
loss_kl=round(total_train_kl_loss / (train_step+1), 5))
print("")
print("Training complete!")
print("Total training took {:} (h:mm:ss)".format(format_time(time.time()-total_t0)))
with open(os.path.join(args.output_dir, "training_model_stats.json"), "w") as file:
json.dump(training_stats, file)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument('--model_name_or_path', default='google/flan-t5-base')
parser.add_argument('--teacher_name_or_path')
parser.add_argument('--output_dir')
parser.add_argument('--dataset_name')
parser.add_argument('--text_column_num', type=int, default=1)
parser.add_argument('--device_id', type=int, default=0)
parser.add_argument('--resume_training', action='store_true')
parser.add_argument('--no_teacher', action='store_true',
help="Used to perform the ablation study, still need to pass the `teacher_name_or_path` argument")
parser.add_argument('--learning_rate', type=float, default=1e-4)
parser.add_argument('--train_batch_size', type=int, default=16)
parser.add_argument('--valid_batch_size', type=int, default=32)
parser.add_argument('--accumulation_steps', type=int, default=1)
parser.add_argument('--sample_every', type=int, default=500)
parser.add_argument('--eval_delay', type=int, default=0)
args = parser.parse_args()
args.train_file = f"data/{args.dataset_name}_train.csv"
args.valid_file = f"data/{args.dataset_name}_valid.csv"
main(args)