-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprimopt.py
65 lines (51 loc) · 2.63 KB
/
primopt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import os, argparse
import optimize as opt
import primitive
import numpy as np
import primsvg
import imageio
def save(i, out_dir, cim, init_image, prims):
im_path = os.path.join(out_dir, "%05d.png" % i)
svg_path = os.path.join(out_dir, "%05d.svg" % i)
print(im_path)
imageio.imsave(im_path, (np.clip(cim,0,1)*255.0).astype(np.uint8))
primsvg.save(init_image, prims, svg_path)
def main():
parser = argparse.ArgumentParser(description="compose an image from randomized primitives")
parser.add_argument('image', help="target image to approximate")
parser.add_argument('N', type=int, help="number of primitives to generate per level of detail")
parser.add_argument('--r-its', help="number of random iterations to choose next seed primitive", type=int, default=500)
parser.add_argument('--m-its', help="number of mutation/hill climbing iterations", type=int, default=100)
parser.add_argument('--out-dir', help="where to save outputs", default='./out')
parser.add_argument('--zoom', help="zoom level of target image (e.g. optimize a 2x smaller version of input)", type=int, default=None)
parser.add_argument('--levels', help="number of levels of detail", type=int, nargs='+', default=[0])
parser.add_argument('--save-its', help="how of to save intermediate images (e.g. every 100 frames)", type=int, default=10)
parser.add_argument('--prim', help="what type of primitive to use", default='ellipse')
parser.add_argument('--procs', help="how many processes to use", default=None, type=int)
parser.add_argument('--init-image', default=None)
args = parser.parse_args()
optimizer = opt.PrimitiveOptimizer(r_its=args.r_its,
m_its=args.m_its,
n_prims=args.N,
prim_type=args.prim,
levels=args.levels,
n_procs=args.procs)
im = imageio.imread(args.image).astype(float) / 255.0
init_image = None
init_i = 0
if args.init_image:
init_image = imageio.imread(args.init_image)
assert np.allclose(init_image.shape, im.shape)
base, ext = os.path.splitext(os.path.basename(args.init_image))
try:
init_i = int(base)
except:
pass
else:
init_image = opt.mean_image(im)
prims = []
for i, (im, prim) in enumerate(optimizer.optimize(im, init_image)):
prims.append(prim)
if i % args.save_its == 0:
save(i, args.out_dir, im, init_image, prims)
if __name__ == "__main__": main()