-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_test.py
118 lines (100 loc) · 3.65 KB
/
train_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
'''Trains a shallow CNN on a rotated MNIST dataset.
Achieves 99.48 % test accuracy after 21 epochs in less than 1 hour with a CORE i7 CPU machine (no GPU).
'''
import keras
from keras.datasets import mnist
from keras.models import Sequential, load_model
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.callbacks import ModelCheckpoint
from keras import backend as K
from datetime import datetime
import numpy as np
import imutils
import cv2
borderType = cv2.BORDER_CONSTANT
start = datetime.now()
batch_size = 128
num_classes = 10
epochs = 21
# input image dimensions
img_rows, img_cols = 28, 28
# the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# rotating data
rotate = True
if rotate:
value = [0, 0, 0]
rotatedx = []
rotatedy = []
for dig, lab in zip(x_train,y_train):
img = cv2.copyMakeBorder(dig, 10, 10, 10, 10, borderType, None, value)
rotated = imutils.rotate_bound(img, 15)
rotatedx.append(rotated[15:43,15:43])
rotatedy.append(lab)
rotated = imutils.rotate_bound(img, 345)
rotatedx.append(rotated[15:43,15:43])
rotatedy.append(lab)
x_rot = np.array(rotatedx)
y_rot = np.array(rotatedy)
x_train = np.vstack((x_train,x_rot))
y_train = np.hstack((y_train,y_rot))
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_val = keras.utils.to_categorical(y_test, num_classes)
# model definition
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(Conv2D(32, (2, 2), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(Conv2D(32, (2, 2), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.25))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
filepath="rotated_21_epoch.h5"
checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True)
callbacks_list = [checkpoint]
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_val),
callbacks=callbacks_list
)
def model_error_rate():
model = load_model(filepath)
err = []
p = model.predict(x_test.reshape(10000, 28, 28, 1))
yhat = np.argmax(p, axis=1)
for i in range(10000):
if yhat[i] != y_test[i]:
err.append(i)
return 1 - (len(err)/10000)
score = model_error_rate()
print('\n\tTest accuracy:', score)
print('\tStart time: ', start)
print('\tEnd time: ', datetime.now())