99<!--  badges: start --> 
1010<!--  [](https://drone.dpi.inpe.br/e-sensing/sits) --> 
1111
12+ [ ![ Status at rOpenSci Software Peer
13+ Review] ( https://badges.ropensci.org/596_status.svg )] ( https://github.com/ropensci/software-review/issues/596 ) 
1214[ ![ CRAN
1315status] ( https://www.r-pkg.org/badges/version/sits )] ( https://cran.r-project.org/package=sits ) 
1416[ ![ R-check-dev] ( https://github.com/e-sensing/sits/actions/workflows/R-CMD-check.yaml/badge.svg )] ( https://github.com/e-sensing/sits/actions/workflows/R-CMD-check.yaml ) 
@@ -119,7 +121,7 @@ devtools::install_github("e-sensing/sits", dependencies = TRUE)
119121#  load the sits library
120122library(sits )
121123# > SITS - satellite image time series analysis.
122- # > Loaded sits v1.4.2-1 .
124+ # > Loaded sits v1.5.0 .
123125# >         See ?sits for help, citation("sits") for use in publication.
124126# >         Documentation avaliable in https://e-sensing.github.io/sitsbook/.
125127``` 
@@ -137,8 +139,8 @@ more information on how to install the required drivers.
137139### Image Collections Accessible by ` sits `   
138140
139141Users create data cubes from analysis-ready data (ARD) image collections
140- available in cloud services. The collections accessible in ` sits ` 
141- 1.4.2.1  are:
142+ available in cloud services. The collections accessible in ` sits `  1.5.0 
143+ are:
142144
1431451 .   Brazil Data Cube
144146    ([ BDC] ( http://brazildatacube.org/en/home-page-2/#dataproducts ) ):
@@ -174,13 +176,13 @@ similar ways.
174176
175177```  r 
176178s2_cube  <-  sits_cube(
177-   source  =  " MPC" 
178-   collection  =  " SENTINEL-2-L2A" 
179-   tiles  =  c(" 20LKP" " 20LLP" 
180-   bands  =  c(" B03" " B08" " B11" " SCL" 
181-   start_date  =  as.Date(" 2018-07-01" 
182-   end_date  =  as.Date(" 2019-06-30" 
183-   progress  =  FALSE 
179+      source  =  " MPC" 
180+      collection  =  " SENTINEL-2-L2A" 
181+      tiles  =  c(" 20LKP" " 20LLP" 
182+      bands  =  c(" B03" " B08" " B11" " SCL" 
183+      start_date  =  as.Date(" 2018-07-01" 
184+      end_date  =  as.Date(" 2019-06-30" 
185+      progress  =  FALSE 
184186)
185187``` 
186188
@@ -208,11 +210,11 @@ Pebesma, 2019](https://www.mdpi.com/2306-5729/4/3/92).
208210
209211```  r 
210212gc_cube  <-  sits_regularize(
211-   cube           =  s2_cube ,
212-   output_dir     =  tempdir(),
213-   period         =  " P15D" 
214-   res            =  60 ,
215-   multicores     =  4 
213+      cube           =  s2_cube ,
214+      output_dir     =  tempdir(),
215+      period         =  " P15D" 
216+      res            =  60 ,
217+      multicores     =  4 
216218)
217219``` 
218220
@@ -247,16 +249,16 @@ library(sits)
247249data_dir  <-  system.file(" extdata/raster/mod13q1" package  =  " sits" 
248250#  create a cube from downloaded files
249251raster_cube  <-  sits_cube(
250-   source  =  " BDC" 
251-   collection  =  " MOD13Q1-6" 
252-   data_dir  =  data_dir ,
253-   delim  =  " _" 
254-   parse_info  =  c(" X1" " X2" " tile" " band" " date" 
255-   progress  =  FALSE 
252+      source  =  " BDC" 
253+      collection  =  " MOD13Q1-6" 
254+      data_dir  =  data_dir ,
255+      delim  =  " _" 
256+      parse_info  =  c(" X1" " X2" " tile" " band" " date" 
257+      progress  =  FALSE 
256258)
257259#  obtain a set of samples defined by a CSV file
258260csv_file  <-  system.file(" extdata/samples/samples_sinop_crop.csv" 
259-   package  =  " sits" 
261+      package  =  " sits" 
260262)
261263#  retrieve the time series associated with the samples from the data cube
262264points  <-  sits_get_data(raster_cube , samples  =  csv_file )
@@ -311,16 +313,16 @@ data("samples_modis_ndvi")
311313data(" point_mt_6bands" 
312314#  Train a deep learning model
313315tempcnn_model  <-  sits_train(
314-   samples  =  samples_modis_ndvi ,
315-   ml_method  =  sits_tempcnn()
316+      samples  =  samples_modis_ndvi ,
317+      ml_method  =  sits_tempcnn()
316318)
317319#  Select NDVI band of the  point to be classified
318320#  Classify using TempCNN model
319321#  Plot the result
320- point_mt_6bands  | > 
321-   sits_select(bands  =  " NDVI" | > 
322-   sits_classify(tempcnn_model ) | > 
323-   plot()
322+ point_mt_6bands  | >   
323+      sits_select(bands  =  " NDVI" | >   
324+      sits_classify(tempcnn_model ) | >   
325+      plot()
324326# >   |                                                                              |                                                                      |   0%  |                                                                              |===================================                                   |  50%  |                                                                              |======================================================================| 100%
325327``` 
326328
@@ -342,44 +344,36 @@ using `sits_view()`.
342344#  Cube is composed of MOD13Q1 images from the Sinop region in Mato Grosso (Brazil)
343345data_dir  <-  system.file(" extdata/raster/mod13q1" package  =  " sits" 
344346sinop  <-  sits_cube(
345-   source  =  " BDC" 
346-   collection  =  " MOD13Q1-6" 
347-   data_dir  =  data_dir ,
348-   delim  =  " _" 
349-   parse_info  =  c(" X1" " X2" " tile" " band" " date" 
350-   progress  =  FALSE 
347+      source  =  " BDC" 
348+      collection  =  " MOD13Q1-6" 
349+      data_dir  =  data_dir ,
350+      delim  =  " _" 
351+      parse_info  =  c(" X1" " X2" " tile" " band" " date" 
352+      progress  =  FALSE 
351353)
352354#  Classify the raster cube, generating a probability file
353355#  Filter the pixels in the cube to remove noise
354356probs_cube  <-  sits_classify(
355-   data  =  sinop ,
356-   ml_model  =  tempcnn_model ,
357-   output_dir  =  tempdir()
357+      data  =  sinop ,
358+      ml_model  =  tempcnn_model ,
359+      output_dir  =  tempdir()
358360)
359361# >   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
360362#  apply a bayesian smoothing to remove outliers
361363bayes_cube  <-  sits_smooth(
362-   cube  =  probs_cube ,
363-   output_dir  =  tempdir()
364+      cube  =  probs_cube ,
365+      output_dir  =  tempdir()
364366)
365367#  generate a thematic map
366368label_cube  <-  sits_label_classification(
367-   cube  =  bayes_cube ,
368-   output_dir  =  tempdir()
369+      cube  =  bayes_cube ,
370+      output_dir  =  tempdir()
369371)
370372# >   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
371373#  plot the the labelled cube
372374plot(label_cube ,
373-   title  =  " Land use and Land cover in Sinop, MT, Brazil in 2018" 
375+      title  =  " Land use and Land cover in Sinop, MT, Brazil in 2018" 
374376)
375- # > The legacy packages maptools, rgdal, and rgeos, underpinning the sp package,
376- # > which was just loaded, will retire in October 2023.
377- # > Please refer to R-spatial evolution reports for details, especially
378- # > https://r-spatial.org/r/2023/05/15/evolution4.html.
379- # > It may be desirable to make the sf package available;
380- # > package maintainers should consider adding sf to Suggests:.
381- # > The sp package is now running under evolution status 2
382- # >      (status 2 uses the sf package in place of rgdal)
383377``` 
384378
385379<div  class =" figure "  style =" text-align center " >
0 commit comments