@@ -79,13 +79,13 @@ sits_rfor <- function(samples = NULL, num_trees = 100, mtry = NULL, ...) {
79
79
# Verifies if randomForest package is installed
80
80
.check_require_packages(" randomForest" )
81
81
# Used to check values (below)
82
- n_input_pixels <- nrow(values )
82
+ input_pixels <- nrow(values )
83
83
# Do classification
84
84
values <- stats :: predict(
85
85
object = model , newdata = values , type = " prob"
86
86
)
87
87
# Are the results consistent with the data input?
88
- .check_processed_values(values , n_input_pixels )
88
+ .check_processed_values(values , input_pixels )
89
89
# Reorder matrix columns if needed
90
90
if (any(labels != colnames(values ))) {
91
91
values <- values [, labels ]
@@ -193,7 +193,7 @@ sits_svm <- function(samples = NULL, formula = sits_formula_linear(),
193
193
# Verifies if e1071 package is installed
194
194
.check_require_packages(" e1071" )
195
195
# Used to check values (below)
196
- n_input_pixels <- nrow(values )
196
+ input_pixels <- nrow(values )
197
197
# Performs data normalization
198
198
values <- .pred_normalize(pred = values , stats = ml_stats )
199
199
# Do classification
@@ -203,7 +203,7 @@ sits_svm <- function(samples = NULL, formula = sits_formula_linear(),
203
203
# Get the predicted probabilities
204
204
values <- attr(values , " probabilities" )
205
205
# Are the results consistent with the data input?
206
- .check_processed_values(values , n_input_pixels )
206
+ .check_processed_values(values , input_pixels )
207
207
# Reorder matrix columns if needed
208
208
if (any(labels != colnames(values ))) {
209
209
values <- values [, labels ]
@@ -337,14 +337,14 @@ sits_xgboost <- function(samples = NULL, learning_rate = 0.15,
337
337
# Verifies if xgboost package is installed
338
338
.check_require_packages(" xgboost" )
339
339
# Used to check values (below)
340
- n_input_pixels <- nrow(values )
340
+ input_pixels <- nrow(values )
341
341
# Do classification
342
342
values <- stats :: predict(
343
343
object = model , as.matrix(values ), ntreelimit = ntreelimit ,
344
344
reshape = TRUE
345
345
)
346
346
# Are the results consistent with the data input?
347
- .check_processed_values(values , n_input_pixels )
347
+ .check_processed_values(values , input_pixels )
348
348
# Update the columns names to labels
349
349
colnames(values ) <- labels
350
350
return (values )
0 commit comments