-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path11.py
71 lines (60 loc) · 2.13 KB
/
11.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
from typing import List
# Runtime: 1220 ms, faster than 5.05% of Python3 online submissions for Container With Most Water.
# Memory Usage: 27.5 MB, less than 43.92% of Python3 online submissions for Container With Most Water.
class Solution:
def maxArea(_, height: List[int]) -> int:
start = 0
end = len(height) - 1
max_area = end * min(height[start], height[end])
while end - start >= 2:
if height[start] > height[end]:
end -= 1
else:
start += 1
max_area = max(max_area, (end - start) * min(height[start], height[end]))
return max_area
# Time Limit Exceeded
class BruteSolution:
def maxArea(_, height: List[int]) -> int:
max_area = 1
max_height = max(height)
for i in range(len(height)):
if max_height >= height[i]:
for j in range(i+1, len(height)):
cur_area = (j-i) * min(height[i], height[j])
max_area = max(cur_area, max_area)
return max_area
"""
11. Container With Most Water
Given n non-negative integers a1, a2, ..., an ,
where each represents a point at coordinate (i, ai).
n vertical lines are drawn such that the two endpoints of the line i is at (i, ai) and (i, 0).
Find two lines, which, together with the x-axis forms a container,
such that the container contains the most water.
Notice that you may not slant the container.
Example 1:
Input: height = [1,8,6,2,5,4,8,3,7]
Output: 49
Explanation: The above vertical lines are represented by array [1,8,6,2,5,4,8,3,7]. In this case, the max area of water (blue section) the container can contain is 49.
Example 2:
Input: height = [1,1]
Output: 1
Example 3:
Input: height = [4,3,2,1,4]
Output: 16
Example 4:
Input: height = [1,2,1]
Output: 2
Constraints:
n == height.length
2 <= n <= 105
0 <= height[i] <= 104
"""
# Testcase
s = Solution()
print(s.maxArea([1,8,6,2,5,4,8,3,7])) # 49
print(s.maxArea([1, 1])) # 1
print(s.maxArea([4,3,2,1,4])) # 16
print(s.maxArea([1,2,1])) # 2
print(s.maxArea([1, 7, 3, 10, 5, 3])) # 15
print(s.maxArea([1,2,3,4,5,6,7,8,9,10,9,8,7,6,5,4,3,2,1])) # 50