-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path53.py
63 lines (53 loc) · 1.76 KB
/
53.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from typing import List
# Runtime: 64 ms, faster than 72.70% of Python3 online submissions for Maximum Subarray.
# Memory Usage: 15 MB, less than 31.66% of Python3 online submissions for Maximum Subarray.
class Solution:
def maxSubArray(_, nums: List[int]) -> int:
cur_sum = nums[0]
max_sum = cur_sum
for cur in nums[1:]:
if cur_sum + cur > cur:
cur_sum += cur
else:
cur_sum = cur
max_sum = cur_sum if cur_sum > max_sum else max_sum
return max_sum
# 6388 ms
class PrevSolution:
def maxSubArray(_, nums: List[int]) -> int:
max_sum = sorted(nums)[-1]
for index in range(len(nums)):
if nums[index] > 0:
compare_sum = 0
for cur in range(index, len(nums)):
compare_sum += nums[cur]
if compare_sum > max_sum:
max_sum = compare_sum
return max_sum
"""
53. Maximum Subarray
Given an integer array nums, find the contiguous subarray (containing at least one number)
which has the largest sum and return its sum.
Example 1:
Input: nums = [-2,1,-3,4,-1,2,1,-5,4]
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
Example 2:
Input: nums = [1]
Output: 1
Example 3:
Input: nums = [5,4,-1,7,8]
Output: 23
Constraints:
1 <= nums.length <= 3 * 104
-105 <= nums[i] <= 105
Follow up: If you have figured out the O(n) solution,
try coding another solution using the divide and conquer approach, which is more subtle.
"""
# Testcase
s = Solution()
print(s.maxSubArray([-2,1,-3,4,-1,2,1,-5,4])) # 6
print(s.maxSubArray([-2,-1])) # -1
print(s.maxSubArray([1])) # 1
print(s.maxSubArray([10000, -50, 10000])) # 19950
print(s.maxSubArray([10, -50, 10])) # 10