-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmake_vector.py
338 lines (298 loc) · 11.2 KB
/
make_vector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
#!/usr/bin/python3
import pickle
import rospy
from sklearn.cluster import DBSCAN
from util import get_rgba_pcd_msg
from sensor_msgs.msg import PointCloud2,Image
import json
import numpy as np
import pandas as pd
import argparse
from pclpy import pcl
import tf
from cv_bridge import CvBridge
import time
import glob
import cv2
import re
from tf import transformations
from predict import get_colors
height = {'pole': 5, 'lane':-1.1}
global sempcd
global args
global index
global poses
global br
global savepcd
global odom_trans
global last_points
global vectors
global lanepcd
class myqueue(list):
def __init__(self, cnt=-1):
self.cnt = cnt
self.index = 0
def append(self, obj):
self.index+=1
if len(self) >= self.cnt and self.cnt != -1:
self.remove(self[0])
super().append(obj)
def is_empty(self):
if len(self) == 0:
return True
else:
return False
def color2int32(tup):
return np.array([*tup[1:], 255]).astype(np.uint8).view('uint32')[0]
def class2color(cls,alpha = False):
c = color_classes[cls]
if not alpha:
return np.array(c).astype(np.uint8)
else:
return np.array([*c, 255]).astype(np.uint8)
def save_nppc(nparr,fname):
s = nparr.shape
if s[1] == 4:#rgb
tmp = pcl.PointCloud.PointXYZRGBA(nparr[:,:3],np.array([color_classes[int(i)] for i in nparr[:,3]]))
else:
tmp = pcl.PointCloud.PointXYZ(nparr)
pcl.io.save(fname,tmp)
return tmp
def draw_line(p1,p2):
assert isinstance(p1,np.ndarray) or isinstance(p1,set)
assert isinstance(p2,np.ndarray) or isinstance(p2,set)
assert p1.shape == p2.shape
if len(p1.shape) == 2 or p1.shape[0]== 2:
d = np.sqrt((p2[1]-p1[1])**2+(p2[0]-p1[0])**2)
n = int(d/0.01)
x = np.linspace(p1[0],p2[0],n)
y = np.linspace(p1[1],p2[1],n)
line = np.stack((x,y),axis=1)
else:
d = np.sqrt((p2[1]-p1[1])**2+(p2[0]-p1[0])**2+(p1[2]-p2[2])**2)
n = int(d/0.01)
x = np.linspace(p1[0],p2[0],n)
y = np.linspace(p1[1],p2[1],n)
z = np.linspace(p1[2],p2[2],n)
line = np.stack((x,y,z),axis=1)
return line
def pcd_trans(pcd,dt,dr,inverse = False):
length = len(pcd)
if not isinstance(pcd,np.ndarray):
pcd = np.array(pcd)
pcd = pcd.T
pcd_xyz = pcd[:3]
ones = np.ones((1, length))
transpcd = np.vstack((pcd_xyz, ones))
mat44 = np.dot(transformations.translation_matrix(dt), transformations.quaternion_matrix(dr))
if inverse:
mat44 = np.matrix(mat44).I
pcd[:3] = np.dot(mat44, transpcd)[:3]
transedpcd = pcd.T
return transedpcd
def get_lane_centers(pcd):
centers = []
if len(pcd) == 0:
return centers
dbs.fit(pcd)
labels = dbs.fit_predict(pcd) # label
cluster = list(set(labels))
n = len(cluster)
for i in cluster:
if n <= 0:
continue
c = pcd[labels == i] # each cluster
if abs(c[:,0].max()-c[:,0].min()) > 0.3:
if c[:,0].mean() < 0:
center = np.array((c[:, 0].max()-0.2, c[:, 1].mean(), c[:,2].mean()))#-2.3))
else:
center = np.array((c[:, 0].min()+0.2, c[:, 1].mean(), c[:,2].mean()))#-2.3))
else:
center = np.array((c[:,0].mean(),c[:,1].mean(),-2.3))
centers.append(center)
return centers
def get_pole_centers(pcd):
centers = []
if len(pcd) == 0:
return centers
pole_dbs.fit(pcd)
labels = pole_dbs.fit_predict(pcd[:,:2]) # label
cluster = list(set(labels))
n = len(cluster)
for i in cluster:
if n <= 0:
continue
c = pcd[labels == i] # each cluster
center = np.array((c[:,0].mean(),c[:,1].mean(),c[:,2].max()))
centers.append(center)
return centers
def process():
global sempcd
global args
global index
global poses
global br
global last_points
global vectors
global lanepcd
if args.trajectory:
p = poses[index]
rotation = pd.Series(p[3:7], index=['x', 'y', 'z', 'w'])
br.sendTransform((p[0], p[1], p[2]), rotation, rospy.Time(time.time()), 'odom', 'world')
if args.vector:
# pole can be vectorized globally
# process lane
lanes = sempcd[sempcd[:, 3] == config['lane_class']]
if len(lanepcd) < window:
lanepcd.append(lanes)
else:
lanepcd.append(lanes)
if index % step == 0:
lanes = np.vstack(lanepcd)
lanes = pcd_trans(lanes, p, rotation, True)
lanes = lanes[lanes[:, 1] < 8] #3 for parking lot, 8 for science park
#testPubHandle.publish(get_rgba_pcd_msg(pcd_trans(lanes,p,rotation)))
centers = get_lane_centers(lanes)
if len(centers) != 0:
centers = list(pcd_trans(centers,p,rotation))
if last_points:
pairs = {}
lines = []
for i in sum(last_points,[]):
d = 100000
pair = (d, None, None)
for j in centers:
dis = np.linalg.norm(i - j)
if dis > 1:
continue
if d != min(d, dis):
d = dis
pair = (d, i, j)
if pair[2] is None:
continue
if tuple(pair[2]) in pairs:
if d < pairs[tuple(pair[2])][0]:
pairs[tuple(pair[2])] = pair
else:
pairs[tuple(pair[2])] = pair
pairs_all.append(pairs)
for i in pairs:
lines.append(draw_line(*(pairs[i][1:])))
if len(lines) != 0:
lines = np.vstack(lines)
#lines = pcd_trans(lines,p,rotation)
vectors.append(lines)
vecmsg = get_rgba_pcd_msg(lines)
vecmsg.header.frame_id = 'world'
vecPubHandle.publish(vecmsg)
last_points.append(centers)
index += 1
if args.filters:
sempcd = sempcd[np.in1d(sempcd[:, 3], args.filters)]
sem_msg = get_rgba_pcd_msg(sempcd)
sem_msg.header.frame_id = 'world'
semanticCloudPubHandle.publish(sem_msg)
if args.semantic and index < len(simgs):
simg = cv2.imread(simgs[index],0)
semimg = colors[simg.flatten()].reshape((*simg.shape,3))
semimgPubHandle.publish(bri.cv2_to_imgmsg(semimg, 'bgr8'))
if args.origin and index < len(imgs):
imgPubHandle.publish(bri.cv2_to_imgmsg(cv2.imread(imgs[index]), 'bgr8'))
# parse arguments
parser = argparse.ArgumentParser(description='Rebuild semantic point cloud')
parser.add_argument('-c','--config',help='The config file path, recommand use this method to start the tool')
parser.add_argument('-i','--input',type=argparse.FileType('rb'))
parser.add_argument('-m','--mode',choices=['outdoor','indoor'],help="Depend on the way to store the pickle file")
parser.add_argument('-f','--filters', default=None,nargs='+',type=int,help='Default to show all the classes, the meaning of each class refers to class.json')
parser.add_argument('-s','--save',default=None,help='Save to pcd file')
parser.add_argument('-t','--trajectory',default=None,help='Trajectory file, use to follow the camera')
parser.add_argument('--semantic',default=None,help='Semantic photos folder')
parser.add_argument('--origin',default=None,help='Origin photos folder')
parser.add_argument('--vector',default=None,help='Do the vectorization, only available when filters are accepted',action='store_true')
args = parser.parse_args()
if args.config:
with open(args.config,'r') as f:
config = json.load(f)
args.input = (args.input or open(config['save_folder']+(config['mode'] == 'indoor' and '/indoor.pkl' or '/outdoor.pkl'),'rb'))
args.mode = (args.mode or config['mode'])
args.trajectory = (args.trajectory or config['save_folder']+'/pose.csv')
args.save = (args.save or config['save_folder']+'/result.pcd')
args.semantic = (args.semantic or config['save_folder']+'/sempics')
args.origin = (args.origin or config['save_folder']+'/originpics')
args.vector = (args.vector) or config['vector']
# init variables
window = 10
step = 1
# start ros
rospy.init_node('fix_distortion', anonymous=False, log_level=rospy.DEBUG)
semanticCloudPubHandle = rospy.Publisher('SemanticCloud', PointCloud2, queue_size=5)
vecPubHandle = rospy.Publisher('VectorCloud', PointCloud2, queue_size=5)
testPubHandle = rospy.Publisher('TestCloud', PointCloud2, queue_size=5)
semimgPubHandle = rospy.Publisher('SemanticImg',Image,queue_size = 5)
imgPubHandle = rospy.Publisher('Img',Image,queue_size = 5)
color_classes = get_colors(config['cmap'])
savepcd = []
vectors = []
bri = CvBridge()
index = 0
br = tf.TransformBroadcaster()
dbs = DBSCAN(eps = 1,min_samples=5,n_jobs=24)
pole_dbs = DBSCAN(eps = 0.3,min_samples=50,n_jobs=24)
#dbs = DBSCAN()
last_points = myqueue(1)
lanepcd = myqueue(window)
polepcd = myqueue(window)
pairs_all = []
vec_world = []
if args.semantic:
simgs = glob.glob(args.semantic+'/*')
simgs.sort()
#simgs.sort(key = lambda x:int(re.findall('[0-9]{4,5}',x)[0]))
colors = color_classes.astype('uint8')
if args.origin:
imgs = glob.glob(args.origin+'/*')
imgs.sort()
#imgs.sort(key = lambda x:int(re.findall('[0-9]{4,5}',x)[0]))
if args.trajectory:
poses = np.loadtxt(args.trajectory, delimiter=',')
if args.mode == 'indoor':
sempcds = pickle.load(args.input)
for sempcd in sempcds:
process()
savepcd = np.concatenate(sempcds)
elif args.mode == 'outdoor':
try:
while True:
sempcd = pickle.load(args.input)
savepcd.append(sempcd)
process()
#print(index)
except EOFError:
print('done')
savepcd = np.concatenate(savepcd)
if args.vector:
poles = savepcd[np.in1d(savepcd[:, 3], [config['pole_class']])]
poles = poles[poles[:,2]>-2]
poles = poles[poles[:,2]<8]
pole_centers = get_pole_centers(poles[:, :3])
poles = []
for pole in pole_centers:
poles.append(draw_line(pole,np.array([pole[0],pole[1],-2.3])))
polemsg = get_rgba_pcd_msg(np.vstack(poles),color2int32((255,0,255,0)))
vecPubHandle.publish(polemsg)
if args.save is not None:
save_nppc(savepcd,args.save)
lane = np.vstack(vectors)
p = np.vstack(poles)
v = np.vstack((lane,p))
save_nppc(v,'/'.join(args.save.split('/')[:-1])+'/vector.pcd')
def filter():
srcpcd = './worldSemanticCloud.pcd'
wsc = pcl.PointCloud.PointXYZRGBA()
fpc = pcl.PointCloud.PointXYZRGBA()
pcl.io.loadPCDFile(srcpcd,wsc)
f = pcl.filters.RadiusOutlierRemoval.PointXYZRGBA()
f.setInputCloud(wsc)
f.setRadiusSearch(0.1)
f.setMinNeighborsInRadius(10)
f.filter(fpc)