-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
206 lines (156 loc) · 6.1 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
/*******************************************************************************************************************************
* Author: Erik Sanders
* Date: January 21, 2023
* File: main.cpp
*
* NOTE: This project was influenced by the
* https://github.com/doleron/yolov5-opencv-cpp-python/blob/main/cpp/yolo.cpp
* repository. I used their work as a template as well as others. Many of the same steps are taken in this repository as others
*
*********************************************************************************************************************************/
#include <iostream>
#include <fstream>
#include <opencv2/opencv.hpp>
const float INPUT_WIDTH = 640.0;
const float INPUT_HEIGHT = 640.0;
const float SCORE_THRESHOLD = 0.2;
const float NMS_THRESHOLD = 0.4;
const float CONFIDENCE_THRESHOLD = 0.4;
struct Bbox{
int confidence;
int classID;
cv::Rect bbox;
};
cv::Mat augmentImage(const cv::Mat& source) {
int col = source.cols;
int row = source.rows;
int _max = MAX(col, row);
cv::Mat result = cv::Mat::zeros(_max, _max, CV_8UC3);
source.copyTo(result(cv::Rect(0, 0, col, row)));
return result;
}
void getPredictions(cv::Mat &image, cv::dnn::Net &net, std::vector<Bbox> &output, const std::vector<std::string> &classNames) {
cv::Mat blob;
cv::Mat augmentedImage = augmentImage(image);
cv::dnn::blobFromImage(augmentedImage, blob, 1.0 / 255.0, cv::Size(INPUT_WIDTH, INPUT_HEIGHT), cv::Scalar(), true, false);
net.setInput(blob);
std::vector<cv::Mat> outputs;
net.forward(outputs, net.getUnconnectedOutLayersNames());
float x_factor = image.cols / INPUT_WIDTH;
float y_factor = image.rows / INPUT_HEIGHT;
float* data = (float*)outputs[0].data;
const int dimensions = 85;
const int rows = 25200;
std::vector<int> class_ids;
std::vector<float> confidences;
std::vector<cv::Rect> boxes;
for (int i = 0; i < rows; i++) {
float confidence = data[4];
if (confidence >= CONFIDENCE_THRESHOLD) {
float* classes_scores = data + 5;
cv::Mat scores(1, classNames.size(), CV_32FC1, classes_scores);
cv::Point class_id;
double max_class_score;
minMaxLoc(scores, 0, &max_class_score, 0, &class_id);
if (max_class_score > SCORE_THRESHOLD) {
confidences.push_back(confidence);
class_ids.push_back(class_id.x);
float x = data[0];
float y = data[1] * 1.5;
float w = data[2];
float h = data[3] * 1.5;
int left = int((x - 0.5 * w) * x_factor);
int top = int((y - 0.5 * h) * y_factor);
int width = int(w * x_factor);
int height = int(h * y_factor);
boxes.push_back(cv::Rect(left, top, width, height));
}
}
data += 85;
}
std::vector<int> nms_result;
cv::dnn::NMSBoxes(boxes, confidences, SCORE_THRESHOLD, NMS_THRESHOLD, nms_result);
for (int i = 0; i < nms_result.size(); i++) {
int idx = nms_result[i];
Bbox result;
result.classID = class_ids[idx];
result.confidence = confidences[idx];
result.bbox = boxes[idx];
output.push_back(result);
}
}
int main() {
int id = 0;
std::cout << "Video(1)/ Image(0): ";
std::cin >> id;
// Load weights and class names
cv::dnn::Net net = cv::dnn::readNet("models/yolov5n.onnx");
std::vector<std::string> classNames;
std::ifstream ifs("COCO Names.txt");
std::string line;
// Initialize a vector of predictions
std::vector<Bbox> predictions;
cv::Mat input;
while (std::getline(ifs, line)) {
classNames.push_back(line);
}
// Run on image
if (id == 0) {
// Load test image
std::string windowName = "Test Image";
std::string img = "images\\people.jpg";
input = cv::imread(img);
if (input.empty()) {
std::cerr << "Image is empty\n";
return -1;
}
getPredictions(input, net, predictions, classNames);
int numBoxes = predictions.size();
for (int i = 0; i < numBoxes; i++){
auto detection = predictions[i];
auto box = detection.bbox;
auto classId = detection.classID;
const auto color = cv::Scalar(255,255,0);
cv::rectangle(input, box, color, 3);
cv::rectangle(input, cv::Point(box.x, box.y - 20), cv::Point(box.x + box.width, box.y), color, cv::FILLED);
cv::putText(input, classNames[classId].c_str(), cv::Point(box.x, box.y - 5), cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0));
}
cv::imshow(windowName, input);
cv::waitKey(0);
cv::destroyWindow(windowName);
}
// Run on video feed
else {
std::string windowName = "Video Feed";
cv::VideoCapture vStream(0);
if (!vStream.isOpened()) {
std::cerr << "Failed to run video feed\n";
return -1;
}
while (true) {
vStream.read(input);
if (input.empty()) {
std::cout << "End of stream\n";
break;
}
getPredictions(input, net, predictions, classNames);
int numBoxes = predictions.size();
for (int i = 0; i < numBoxes; i++) {
auto detection = predictions[i];
auto box = detection.bbox;
auto classId = detection.classID;
const auto color = cv::Scalar(255, 255, 0);
cv::rectangle(input, box, color, 3);
cv::rectangle(input, cv::Point(box.x, box.y - 20), cv::Point(box.x + box.width, box.y), color, cv::FILLED);
cv::putText(input, classNames[classId].c_str(), cv::Point(box.x, box.y - 5), cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0));
}
cv::imshow(windowName, input);
if (cv::waitKey(1) != -1) {
vStream.release();
std::cout << "finished by user\n";
break;
}
}
}
return 0;
}