|
| 1 | +from zhipuai import ZhipuAI |
| 2 | +import openai |
| 3 | +from volcenginesdkarkruntime import Ark |
| 4 | + |
| 5 | + |
| 6 | +# zhipuai: glm-4-plus、glm-4-0520、glm-4 、glm-4-air、glm-4-airx、glm-4-long 、 glm-4-flashx 、 glm-4-flash |
| 7 | +# kimi: |
| 8 | +# ark: |
| 9 | +# claude: |
| 10 | + |
| 11 | +class LLM_ai: |
| 12 | + _MODELS = { |
| 13 | + "zhipuai": {"url": "", # SDK use default |
| 14 | + "model": "glm-4-flash", |
| 15 | + "key": "3042e500736dc267a9ff23dd323be0e2.QFR0jHfrGHHfenme", |
| 16 | + "max_tokens": 8000, |
| 17 | + }, |
| 18 | + "kimi": {"url": "https://api-sg.moonshot.ai/v1", # use openAI SDK |
| 19 | + "model": "moonshot-v1-8k", |
| 20 | + "key": "sk-czQ8MFRZQc5o1PVRSiPBlCuReupzfuVwKEJztUOMm7eAlSu6", |
| 21 | + "max_tokens": 8000, |
| 22 | + }, |
| 23 | + "ark": {"url": "https://ark.cn-beijing.volces.com/api/v3", # 火山方舟大模型,抖音,豆包,扣子是一家 |
| 24 | + "model": "ep-20240929221043-jsbgc", |
| 25 | + "key": "575007a8-66e2-43e5-90f9-e699c3345736", |
| 26 | + "max_tokens": 4000, |
| 27 | + }, |
| 28 | + "claude": {"url": "https://api.gptapi.us/v1/chat/completions", # Legend's testing bed |
| 29 | + "model": "claude-3-5-sonnet", |
| 30 | + "key": "sk-vUVDEyOcoNDnUMtB3aF3FeFcD5534a8f89De99CcCcE8F7B2", |
| 31 | + "max_tokens": 8000, |
| 32 | + }, |
| 33 | + } |
| 34 | + _llm = None |
| 35 | + _client = None |
| 36 | + |
| 37 | + |
| 38 | + def __init__(self, llm: str, model=""): |
| 39 | + self._llm = llm |
| 40 | + |
| 41 | + if llm == "zhipuai": |
| 42 | + self._client = ZhipuAI(api_key=self._MODELS[llm]["key"]) |
| 43 | + elif llm == "kimi": |
| 44 | + self._client = openai.OpenAI(api_key=self._MODELS[llm]["key"], |
| 45 | + base_url = self._MODELS[llm]["url"]) |
| 46 | + elif llm == "ark": |
| 47 | + self._client = Ark(api_key=self._MODELS[llm]["key"], |
| 48 | + base_url=self._MODELS[llm]["url"]) |
| 49 | + elif llm == "claude": |
| 50 | + self._client = openai.OpenAI(api_key=self._MODELS[llm]["key"], |
| 51 | + base_url=self._MODELS[llm]["url"]) |
| 52 | + else: |
| 53 | + raise ValueError(f"Invalid llm: {llm}") |
| 54 | + |
| 55 | + if not model == "": |
| 56 | + self._MODELS[llm]["model"] = model |
| 57 | + |
| 58 | + # use stream model if pass_chunk is not None |
| 59 | + def chat(self, prompt: str, t: str, pass_chunk= None): |
| 60 | + if pass_chunk is None: |
| 61 | + response = self._client.chat.completions.create( |
| 62 | + model=self._MODELS[self._llm]["model"], |
| 63 | + messages = [ |
| 64 | + {"role": "system", "content": prompt}, |
| 65 | + {"role": "user", "content": t} |
| 66 | + ], |
| 67 | + temperature = 0.3, |
| 68 | + ) |
| 69 | + return response.choices[0].message.content |
| 70 | + else: |
| 71 | + response = self._client.chat.completions.create( |
| 72 | + model=self._MODELS[self._llm]["model"], |
| 73 | + messages=[ |
| 74 | + {"role": "system", "content": prompt}, |
| 75 | + {"role": "user", "content": t}, |
| 76 | + ], |
| 77 | + temperature=0.3, |
| 78 | + stream=True, |
| 79 | + max_tokens=self._MODELS[self._llm]["max_tokens"], |
| 80 | + ) |
| 81 | + |
| 82 | + answer="" |
| 83 | + for chunk in response: |
| 84 | + if chunk.choices[0].finish_reason is None: |
| 85 | + print(vars(chunk),"\n\n") |
| 86 | + pass_chunk(chunk.choices[0].delta.content) |
| 87 | + answer = answer + chunk.choices[0].delta.content |
| 88 | + else: |
| 89 | + break |
| 90 | + return answer |
| 91 | +# end of class LLM_ai |
0 commit comments