forked from microsoft/onnxruntime
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtensor-factory-impl.ts
332 lines (298 loc) · 11.3 KB
/
tensor-factory-impl.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
import {
OptionsDimensions,
OptionsFormat,
OptionsNormalizationParameters,
OptionsTensorFormat,
OptionsTensorLayout,
TensorFromGpuBufferOptions,
TensorFromImageBitmapOptions,
TensorFromImageDataOptions,
TensorFromImageElementOptions,
TensorFromMLTensorOptions,
TensorFromTextureOptions,
TensorFromUrlOptions,
} from './tensor-factory.js';
import { Tensor } from './tensor-impl.js';
import { Tensor as TensorInterface } from './tensor.js';
interface BufferToTensorOptions
extends OptionsDimensions,
OptionsTensorLayout,
OptionsNormalizationParameters,
OptionsFormat,
OptionsTensorFormat {}
/**
* Create a new tensor object from image object
*
* @param buffer - Extracted image buffer data - assuming RGBA format
* @param imageFormat - input image configuration - required configurations height, width, format
* @param tensorFormat - output tensor configuration - Default is RGB format
*/
export const bufferToTensor = (buffer: Uint8ClampedArray | undefined, options: BufferToTensorOptions): Tensor => {
if (buffer === undefined) {
throw new Error('Image buffer must be defined');
}
if (options.height === undefined || options.width === undefined) {
throw new Error('Image height and width must be defined');
}
if (options.tensorLayout === 'NHWC') {
throw new Error('NHWC Tensor layout is not supported yet');
}
const { height, width } = options;
const norm = options.norm ?? { mean: 255, bias: 0 };
let normMean: [number, number, number, number];
let normBias: [number, number, number, number];
if (typeof norm.mean === 'number') {
normMean = [norm.mean, norm.mean, norm.mean, norm.mean];
} else {
normMean = [norm.mean![0], norm.mean![1], norm.mean![2], norm.mean![3] ?? 255];
}
if (typeof norm.bias === 'number') {
normBias = [norm.bias, norm.bias, norm.bias, norm.bias];
} else {
normBias = [norm.bias![0], norm.bias![1], norm.bias![2], norm.bias![3] ?? 0];
}
const inputformat = options.format !== undefined ? options.format : 'RGBA';
// default value is RGBA since imagedata and HTMLImageElement uses it
const outputformat =
options.tensorFormat !== undefined ? (options.tensorFormat !== undefined ? options.tensorFormat : 'RGB') : 'RGB';
const stride = height * width;
const float32Data = outputformat === 'RGBA' ? new Float32Array(stride * 4) : new Float32Array(stride * 3);
// Default pointer assignments
let step = 4,
rImagePointer = 0,
gImagePointer = 1,
bImagePointer = 2,
aImagePointer = 3;
let rTensorPointer = 0,
gTensorPointer = stride,
bTensorPointer = stride * 2,
aTensorPointer = -1;
// Updating the pointer assignments based on the input image format
if (inputformat === 'RGB') {
step = 3;
rImagePointer = 0;
gImagePointer = 1;
bImagePointer = 2;
aImagePointer = -1;
}
// Updating the pointer assignments based on the output tensor format
if (outputformat === 'RGBA') {
aTensorPointer = stride * 3;
} else if (outputformat === 'RBG') {
rTensorPointer = 0;
bTensorPointer = stride;
gTensorPointer = stride * 2;
} else if (outputformat === 'BGR') {
bTensorPointer = 0;
gTensorPointer = stride;
rTensorPointer = stride * 2;
}
for (
let i = 0;
i < stride;
i++, rImagePointer += step, bImagePointer += step, gImagePointer += step, aImagePointer += step
) {
float32Data[rTensorPointer++] = (buffer[rImagePointer] + normBias[0]) / normMean[0];
float32Data[gTensorPointer++] = (buffer[gImagePointer] + normBias[1]) / normMean[1];
float32Data[bTensorPointer++] = (buffer[bImagePointer] + normBias[2]) / normMean[2];
if (aTensorPointer !== -1 && aImagePointer !== -1) {
float32Data[aTensorPointer++] = (buffer[aImagePointer] + normBias[3]) / normMean[3];
}
}
// Float32Array -> ort.Tensor
const outputTensor =
outputformat === 'RGBA'
? new Tensor('float32', float32Data, [1, 4, height, width])
: new Tensor('float32', float32Data, [1, 3, height, width]);
return outputTensor;
};
/**
* implementation of Tensor.fromImage().
*/
export const tensorFromImage = async (
image: ImageData | HTMLImageElement | ImageBitmap | string,
options?:
| TensorFromImageDataOptions
| TensorFromImageElementOptions
| TensorFromImageBitmapOptions
| TensorFromUrlOptions,
): Promise<Tensor> => {
// checking the type of image object
const isHTMLImageEle = typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement;
const isImageDataEle = typeof ImageData !== 'undefined' && image instanceof ImageData;
const isImageBitmap = typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap;
const isString = typeof image === 'string';
let data: Uint8ClampedArray | undefined;
let bufferToTensorOptions: BufferToTensorOptions = options ?? {};
const createCanvas = () => {
if (typeof document !== 'undefined') {
return document.createElement('canvas');
} else if (typeof OffscreenCanvas !== 'undefined') {
return new OffscreenCanvas(1, 1);
} else {
throw new Error('Canvas is not supported');
}
};
const createCanvasContext = (canvas: HTMLCanvasElement | OffscreenCanvas) => {
if (canvas instanceof HTMLCanvasElement) {
return canvas.getContext('2d');
} else if (canvas instanceof OffscreenCanvas) {
return canvas.getContext('2d') as OffscreenCanvasRenderingContext2D;
} else {
return null;
}
};
// filling and checking image configuration options
if (isHTMLImageEle) {
// HTMLImageElement - image object - format is RGBA by default
const canvas = createCanvas();
canvas.width = image.width;
canvas.height = image.height;
const pixels2DContext = createCanvasContext(canvas);
if (pixels2DContext != null) {
let height = image.height;
let width = image.width;
if (options !== undefined && options.resizedHeight !== undefined && options.resizedWidth !== undefined) {
height = options.resizedHeight;
width = options.resizedWidth;
}
if (options !== undefined) {
bufferToTensorOptions = options;
if (options.tensorFormat !== undefined) {
throw new Error('Image input config format must be RGBA for HTMLImageElement');
} else {
bufferToTensorOptions.tensorFormat = 'RGBA';
}
bufferToTensorOptions.height = height;
bufferToTensorOptions.width = width;
} else {
bufferToTensorOptions.tensorFormat = 'RGBA';
bufferToTensorOptions.height = height;
bufferToTensorOptions.width = width;
}
pixels2DContext.drawImage(image, 0, 0);
data = pixels2DContext.getImageData(0, 0, width, height).data;
} else {
throw new Error('Can not access image data');
}
} else if (isImageDataEle) {
let height: number;
let width: number;
if (options !== undefined && options.resizedWidth !== undefined && options.resizedHeight !== undefined) {
height = options.resizedHeight;
width = options.resizedWidth;
} else {
height = image.height;
width = image.width;
}
if (options !== undefined) {
bufferToTensorOptions = options;
}
bufferToTensorOptions.format = 'RGBA';
bufferToTensorOptions.height = height;
bufferToTensorOptions.width = width;
if (options !== undefined) {
const tempCanvas = createCanvas();
tempCanvas.width = width;
tempCanvas.height = height;
const pixels2DContext = createCanvasContext(tempCanvas);
if (pixels2DContext != null) {
pixels2DContext.putImageData(image, 0, 0);
data = pixels2DContext.getImageData(0, 0, width, height).data;
} else {
throw new Error('Can not access image data');
}
} else {
data = image.data;
}
} else if (isImageBitmap) {
// ImageBitmap - image object - format must be provided by user
if (options === undefined) {
throw new Error('Please provide image config with format for Imagebitmap');
}
const canvas = createCanvas();
canvas.width = image.width;
canvas.height = image.height;
const pixels2DContext = createCanvasContext(canvas);
if (pixels2DContext != null) {
const height = image.height;
const width = image.width;
pixels2DContext.drawImage(image, 0, 0, width, height);
data = pixels2DContext.getImageData(0, 0, width, height).data;
bufferToTensorOptions.height = height;
bufferToTensorOptions.width = width;
return bufferToTensor(data, bufferToTensorOptions);
} else {
throw new Error('Can not access image data');
}
} else if (isString) {
return new Promise((resolve, reject) => {
const canvas = createCanvas();
const context = createCanvasContext(canvas);
if (!image || !context) {
return reject();
}
const newImage = new Image();
newImage.crossOrigin = 'Anonymous';
newImage.src = image;
newImage.onload = () => {
canvas.width = newImage.width;
canvas.height = newImage.height;
context.drawImage(newImage, 0, 0, canvas.width, canvas.height);
const img = context.getImageData(0, 0, canvas.width, canvas.height);
bufferToTensorOptions.height = canvas.height;
bufferToTensorOptions.width = canvas.width;
resolve(bufferToTensor(img.data, bufferToTensorOptions));
};
});
} else {
throw new Error('Input data provided is not supported - aborted tensor creation');
}
if (data !== undefined) {
return bufferToTensor(data, bufferToTensorOptions);
} else {
throw new Error('Input data provided is not supported - aborted tensor creation');
}
};
/**
* implementation of Tensor.fromTexture().
*/
export const tensorFromTexture = <T extends TensorInterface.TextureDataTypes>(
texture: TensorInterface.TextureType,
options: TensorFromTextureOptions<T>,
): Tensor => {
const { width, height, download, dispose } = options;
// Always assume RGBAF32. TODO: support different texture format
const dims = [1, height, width, 4];
return new Tensor({ location: 'texture', type: 'float32', texture, dims, download, dispose });
};
/**
* implementation of Tensor.fromGpuBuffer().
*/
export const tensorFromGpuBuffer = <T extends TensorInterface.GpuBufferDataTypes>(
gpuBuffer: TensorInterface.GpuBufferType,
options: TensorFromGpuBufferOptions<T>,
): Tensor => {
const { dataType, dims, download, dispose } = options;
return new Tensor({ location: 'gpu-buffer', type: dataType ?? 'float32', gpuBuffer, dims, download, dispose });
};
/**
* implementation of Tensor.fromMLTensor().
*/
export const tensorFromMLTensor = <T extends TensorInterface.MLTensorDataTypes>(
mlTensor: TensorInterface.MLTensorType,
options: TensorFromMLTensorOptions<T>,
): Tensor => {
const { dataType, dims, download, dispose } = options;
return new Tensor({ location: 'ml-tensor', type: dataType ?? 'float32', mlTensor, dims, download, dispose });
};
/**
* implementation of Tensor.fromPinnedBuffer().
*/
export const tensorFromPinnedBuffer = <T extends TensorInterface.CpuPinnedDataTypes>(
type: T,
buffer: TensorInterface.DataTypeMap[T],
dims?: readonly number[],
): Tensor => new Tensor({ location: 'cpu-pinned', type, data: buffer, dims: dims ?? [buffer.length] });