forked from microsoft/onnxruntime
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtensor-impl.ts
540 lines (492 loc) · 17.3 KB
/
tensor-impl.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
import { tensorToDataURL, tensorToImageData } from './tensor-conversion-impl.js';
import { TensorToDataUrlOptions, TensorToImageDataOptions } from './tensor-conversion.js';
import {
tensorFromGpuBuffer,
tensorFromImage,
tensorFromMLTensor,
tensorFromPinnedBuffer,
tensorFromTexture,
} from './tensor-factory-impl.js';
import {
CpuPinnedConstructorParameters,
GpuBufferConstructorParameters,
MLTensorConstructorParameters,
TensorFromGpuBufferOptions,
TensorFromImageBitmapOptions,
TensorFromImageDataOptions,
TensorFromImageElementOptions,
TensorFromMLTensorOptions,
TensorFromTextureOptions,
TensorFromUrlOptions,
TextureConstructorParameters,
} from './tensor-factory.js';
import {
checkTypedArray,
NUMERIC_TENSOR_TYPE_TO_TYPEDARRAY_MAP,
NUMERIC_TENSOR_TYPEDARRAY_TO_TYPE_MAP,
SupportedTypedArray,
SupportedTypedArrayConstructors,
} from './tensor-impl-type-mapping.js';
import { calculateSize, tensorReshape } from './tensor-utils-impl.js';
import { Tensor as TensorInterface } from './tensor.js';
// type aliases for those exported from Tensor interface
type TensorType = TensorInterface.Type;
type TensorDataType = TensorInterface.DataType;
type TensorDataLocation = TensorInterface.DataLocation;
type TensorTextureType = TensorInterface.TextureType;
type TensorGpuBufferType = TensorInterface.GpuBufferType;
type TensorMLTensorType = TensorInterface.MLTensorType;
/**
* the implementation of Tensor interface.
*
* @ignore
*/
export class Tensor implements TensorInterface {
// #region constructors
/**
* Construct a new CPU tensor object from the given type, data and dims.
*/
constructor(
type: TensorType,
data: TensorDataType | readonly string[] | readonly number[] | readonly boolean[],
dims?: readonly number[],
);
/**
* Construct a new CPU tensor object from the given data and dims. Type is inferred from data.
*/
constructor(data: TensorDataType | readonly string[] | readonly boolean[], dims?: readonly number[]);
/**
* Construct a new tensor object from the pinned CPU data with the given type and dims.
*
* Tensor's location will be set to 'cpu-pinned'.
*
* @param params - Specify the parameters to construct the tensor.
*/
constructor(params: CpuPinnedConstructorParameters);
/**
* Construct a new tensor object from the WebGL texture with the given type and dims.
*
* Tensor's location will be set to 'texture'.
*
* @param params - Specify the parameters to construct the tensor.
*/
constructor(params: TextureConstructorParameters);
/**
* Construct a new tensor object from the WebGPU buffer with the given type and dims.
*
* Tensor's location will be set to 'gpu-buffer'.
*
* @param params - Specify the parameters to construct the tensor.
*/
constructor(params: GpuBufferConstructorParameters);
/**
* Construct a new tensor object from the WebNN MLTensor with the given type and dims.
*
* Tensor's location will be set to 'ml-tensor'.
*
* @param params - Specify the parameters to construct the tensor.
*/
constructor(params: MLTensorConstructorParameters);
/**
* implementation.
*/
constructor(
arg0:
| TensorType
| TensorDataType
| readonly string[]
| readonly boolean[]
| CpuPinnedConstructorParameters
| TextureConstructorParameters
| GpuBufferConstructorParameters
| MLTensorConstructorParameters,
arg1?: TensorDataType | readonly number[] | readonly string[] | readonly boolean[],
arg2?: readonly number[],
) {
// perform one-time check for BigInt/Float16Array support
checkTypedArray();
let type: TensorType;
let dims: readonly number[];
if (typeof arg0 === 'object' && 'location' in arg0) {
//
// constructing tensor from specific location
//
this.dataLocation = arg0.location;
type = arg0.type;
dims = arg0.dims;
switch (arg0.location) {
case 'cpu-pinned': {
const expectedTypedArrayConstructor = NUMERIC_TENSOR_TYPE_TO_TYPEDARRAY_MAP.get(type);
if (!expectedTypedArrayConstructor) {
throw new TypeError(`unsupported type "${type}" to create tensor from pinned buffer`);
}
if (!(arg0.data instanceof expectedTypedArrayConstructor)) {
throw new TypeError(`buffer should be of type ${expectedTypedArrayConstructor.name}`);
}
this.cpuData = arg0.data;
break;
}
case 'texture': {
if (type !== 'float32') {
throw new TypeError(`unsupported type "${type}" to create tensor from texture`);
}
this.gpuTextureData = arg0.texture;
this.downloader = arg0.download;
this.disposer = arg0.dispose;
break;
}
case 'gpu-buffer': {
if (
type !== 'float32' &&
type !== 'float16' &&
type !== 'int32' &&
type !== 'int64' &&
type !== 'uint32' &&
type !== 'uint8' &&
type !== 'bool' &&
type !== 'uint4' &&
type !== 'int4'
) {
throw new TypeError(`unsupported type "${type}" to create tensor from gpu buffer`);
}
this.gpuBufferData = arg0.gpuBuffer;
this.downloader = arg0.download;
this.disposer = arg0.dispose;
break;
}
case 'ml-tensor': {
if (
type !== 'float32' &&
type !== 'float16' &&
type !== 'int32' &&
type !== 'int64' &&
type !== 'uint32' &&
type !== 'uint64' &&
type !== 'int8' &&
type !== 'uint8' &&
type !== 'bool'
) {
throw new TypeError(`unsupported type "${type}" to create tensor from MLTensor`);
}
this.mlTensorData = arg0.mlTensor;
this.downloader = arg0.download;
this.disposer = arg0.dispose;
break;
}
default:
throw new Error(`Tensor constructor: unsupported location '${this.dataLocation}'`);
}
} else {
//
// constructing tensor of location 'cpu'
//
let data: TensorDataType;
let maybeDims: typeof arg1 | typeof arg2;
// check whether arg0 is type or data
if (typeof arg0 === 'string') {
//
// Override: constructor(type, data, ...)
//
type = arg0;
maybeDims = arg2;
if (arg0 === 'string') {
// string tensor
if (!Array.isArray(arg1)) {
throw new TypeError("A string tensor's data must be a string array.");
}
// we don't check whether every element in the array is string; this is too slow. we assume it's correct and
// error will be populated at inference
data = arg1;
} else {
// numeric tensor
const typedArrayConstructor = NUMERIC_TENSOR_TYPE_TO_TYPEDARRAY_MAP.get(arg0);
if (typedArrayConstructor === undefined) {
throw new TypeError(`Unsupported tensor type: ${arg0}.`);
}
if (Array.isArray(arg1)) {
if ((arg0 === 'float16' && typedArrayConstructor === Uint16Array) || arg0 === 'uint4' || arg0 === 'int4') {
// - 'float16':
// When no Float16Array polyfill is used, we cannot create 'float16' tensor from number array.
//
// Throw error here because when user try to use number array as data,
// e.g. new Tensor('float16', [1, 2, 3, 4], dims)), it will actually call
// Uint16Array.from(arg1) which generates wrong data.
//
// - 'uint4' and 'int4':
// Uint8Array.from(arg1) will generate wrong data for 'uint4' and 'int4' tensor.
//
throw new TypeError(
`Creating a ${arg0} tensor from number array is not supported. Please use ${typedArrayConstructor.name} as data.`,
);
} else if (arg0 === 'uint64' || arg0 === 'int64') {
// use 'as any' here because:
// 1. TypeScript's check on type of 'Array.isArray()' does not work with readonly arrays.
// see https://github.com/microsoft/TypeScript/issues/17002
// 2. TypeScript's check on union type of '(BigInt64ArrayConstructor|BigUint64ArrayConstructor).from()'
// does not accept parameter mapFn.
// 3. parameters of 'SupportedTypedArrayConstructors.from()' does not match the requirement of the union
// type.
// assume 'arg1' is of type "readonly number[]|readonly bigint[]" here.
// eslint-disable-next-line @typescript-eslint/no-explicit-any
data = (typedArrayConstructor as any).from(arg1, BigInt);
} else {
// assume 'arg1' is of type "readonly number[]" here.
// eslint-disable-next-line @typescript-eslint/no-explicit-any
data = (typedArrayConstructor as any).from(arg1);
}
} else if (arg1 instanceof typedArrayConstructor) {
data = arg1;
} else {
throw new TypeError(`A ${type} tensor's data must be type of ${typedArrayConstructor}`);
}
}
} else {
//
// Override: constructor(data, ...)
//
maybeDims = arg1;
if (Array.isArray(arg0)) {
// only boolean[] and string[] is supported
if (arg0.length === 0) {
throw new TypeError('Tensor type cannot be inferred from an empty array.');
}
const firstElementType = typeof arg0[0];
if (firstElementType === 'string') {
type = 'string';
data = arg0;
} else if (firstElementType === 'boolean') {
type = 'bool';
// 'arg0' is of type 'boolean[]'. Uint8Array.from(boolean[]) actually works, but typescript thinks this is
// wrong type. We use 'as any' to make it happy.
// eslint-disable-next-line @typescript-eslint/no-explicit-any
data = Uint8Array.from(arg0 as any[]);
} else {
throw new TypeError(`Invalid element type of data array: ${firstElementType}.`);
}
} else {
// get tensor type from TypedArray
const mappedType = NUMERIC_TENSOR_TYPEDARRAY_TO_TYPE_MAP.get(
arg0.constructor as SupportedTypedArrayConstructors,
);
if (mappedType === undefined) {
throw new TypeError(`Unsupported type for tensor data: ${arg0.constructor}.`);
}
type = mappedType;
data = arg0 as SupportedTypedArray;
}
}
// type and data is processed, now processing dims
if (maybeDims === undefined) {
// assume 1-D tensor if dims omitted
maybeDims = [data.length];
} else if (!Array.isArray(maybeDims)) {
throw new TypeError("A tensor's dims must be a number array");
}
dims = maybeDims as readonly number[];
this.cpuData = data;
this.dataLocation = 'cpu';
}
// perform check on dims
const size = calculateSize(dims);
// if data is on CPU, check whether data length matches tensor size
if (this.cpuData && size !== this.cpuData.length) {
if ((type === 'uint4' || type === 'int4') && Math.ceil(size / 2) === this.cpuData.length) {
// for (u)int4, the data length is half of the tensor size. So we check this special case when size is odd.
} else {
throw new Error(`Tensor's size(${size}) does not match data length(${this.cpuData.length}).`);
}
}
this.type = type;
this.dims = dims;
this.size = size;
}
// #endregion
// #region factory
static async fromImage(
image: ImageData | HTMLImageElement | ImageBitmap | string,
options?:
| TensorFromImageDataOptions
| TensorFromImageElementOptions
| TensorFromImageBitmapOptions
| TensorFromUrlOptions,
): Promise<TensorInterface> {
return tensorFromImage(image, options);
}
static fromTexture<T extends TensorInterface.TextureDataTypes>(
texture: TensorTextureType,
options: TensorFromTextureOptions<T>,
): TensorInterface {
return tensorFromTexture(texture, options);
}
static fromGpuBuffer<T extends TensorInterface.GpuBufferDataTypes>(
gpuBuffer: TensorGpuBufferType,
options: TensorFromGpuBufferOptions<T>,
): TensorInterface {
return tensorFromGpuBuffer(gpuBuffer, options);
}
static fromMLTensor<T extends TensorInterface.MLTensorDataTypes>(
mlTensor: TensorMLTensorType,
options: TensorFromMLTensorOptions<T>,
): TensorInterface {
return tensorFromMLTensor(mlTensor, options);
}
static fromPinnedBuffer<T extends TensorInterface.CpuPinnedDataTypes>(
type: T,
buffer: TensorInterface.DataTypeMap[T],
dims?: readonly number[],
): Tensor {
return tensorFromPinnedBuffer(type, buffer, dims);
}
// #endregion
// #region conversions
toDataURL(options?: TensorToDataUrlOptions): string {
return tensorToDataURL(this, options);
}
toImageData(options?: TensorToImageDataOptions): ImageData {
return tensorToImageData(this, options);
}
// #endregion
// #region public fields
readonly dims: readonly number[];
readonly type: TensorType;
readonly size: number;
// #endregion
// #region private fields
/**
* stores the location of the data.
*/
private dataLocation: TensorDataLocation;
/**
* stores the data on CPU, if location is 'cpu' or 'cpu-pinned'. otherwise empty.
*/
private cpuData?: TensorDataType;
/**
* stores the underlying texture when location is 'texture'. otherwise empty.
*/
private gpuTextureData?: TensorTextureType;
/**
* stores the underlying GPU buffer when location is 'gpu-buffer'. otherwise empty.
*/
private gpuBufferData?: TensorGpuBufferType;
/**
* stores the underlying WebNN MLTensor when location is 'ml-tensor'. otherwise empty.
*/
private mlTensorData?: TensorMLTensorType;
/**
* stores an optional downloader function to download data from GPU to CPU.
*/
private downloader?(): Promise<TensorDataType>;
/**
* a flag indicating whether the data is being downloaded from GPU to CPU.
*/
private isDownloading?: boolean;
/**
* stores an optional disposer function to dispose the underlying data.
*/
private disposer?(): void;
// #endregion
// #region properties
get data(): TensorDataType {
this.ensureValid();
if (!this.cpuData) {
throw new Error(
'The data is not on CPU. Use `getData()` to download GPU data to CPU, ' +
'or use `texture` or `gpuBuffer` property to access the GPU data directly.',
);
}
return this.cpuData;
}
get location(): TensorDataLocation {
return this.dataLocation;
}
get texture(): TensorTextureType {
this.ensureValid();
if (!this.gpuTextureData) {
throw new Error('The data is not stored as a WebGL texture.');
}
return this.gpuTextureData;
}
get gpuBuffer(): TensorGpuBufferType {
this.ensureValid();
if (!this.gpuBufferData) {
throw new Error('The data is not stored as a WebGPU buffer.');
}
return this.gpuBufferData;
}
get mlTensor(): TensorMLTensorType {
this.ensureValid();
if (!this.mlTensorData) {
throw new Error('The data is not stored as a WebNN MLTensor.');
}
return this.mlTensorData;
}
// #endregion
// #region methods
async getData(releaseData?: boolean): Promise<TensorDataType> {
this.ensureValid();
switch (this.dataLocation) {
case 'cpu':
case 'cpu-pinned':
return this.data;
case 'texture':
case 'gpu-buffer':
case 'ml-tensor': {
if (!this.downloader) {
throw new Error('The current tensor is not created with a specified data downloader.');
}
if (this.isDownloading) {
throw new Error('The current tensor is being downloaded.');
}
try {
this.isDownloading = true;
const data = await this.downloader();
this.downloader = undefined;
this.dataLocation = 'cpu';
this.cpuData = data;
if (releaseData && this.disposer) {
this.disposer();
this.disposer = undefined;
}
return data;
} finally {
this.isDownloading = false;
}
}
default:
throw new Error(`cannot get data from location: ${this.dataLocation}`);
}
}
dispose(): void {
if (this.isDownloading) {
throw new Error('The current tensor is being downloaded.');
}
if (this.disposer) {
this.disposer();
this.disposer = undefined;
}
this.cpuData = undefined;
this.gpuTextureData = undefined;
this.gpuBufferData = undefined;
this.mlTensorData = undefined;
this.downloader = undefined;
this.isDownloading = undefined;
this.dataLocation = 'none';
}
// #endregion
// #region tensor utilities
private ensureValid(): void {
if (this.dataLocation === 'none') {
throw new Error('The tensor is disposed.');
}
}
reshape(dims: readonly number[]): TensorInterface {
this.ensureValid();
if (this.downloader || this.disposer) {
throw new Error('Cannot reshape a tensor that owns GPU resource.');
}
return tensorReshape(this, dims);
}
// #endregion
}