-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmain.py
executable file
·272 lines (240 loc) · 11.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
"""
=================
Command line argument parser and loading the models.
=================
"""
import argparse
import datasets
import datetime
import logging
import models
import pprint
import os
import random
import sys
import torch
import pdb
from torch.autograd import Variable
from training import solver
def model_class(class_name):
if class_name not in models.__all__:
raise argparse.ArgumentTypeError("Invalid model {}; choices: {}".format(
class_name, models.__all__))
return getattr(models, class_name)
def dataset_class(class_name):
if class_name not in datasets.__all__:
raise argparse.ArgumentTypeError(
"Invalid dataset {}; choices: {}".format(class_name,
datasets.__all__))
return getattr(datasets, class_name)
def setup_logging(filepath, verbose):
logFormatter = logging.Formatter(
'%(levelname)s %(asctime)-20s:\t %(message)s')
rootLogger = logging.getLogger()
if verbose:
rootLogger.setLevel(logging.DEBUG)
else:
rootLogger.setLevel(logging.INFO)
logging.getLogger('PIL').setLevel(logging.WARNING)
# Setup the logger to write into file
fileHandler = logging.FileHandler(filepath)
fileHandler.setFormatter(logFormatter)
rootLogger.addHandler(fileHandler)
# Setup the logger to write into stdout
consoleHandler = logging.StreamHandler(sys.stdout)
consoleHandler.setFormatter(logFormatter)
rootLogger.addHandler(consoleHandler)
def get_non_default_flags_str(args, parser, *ignore):
flags = []
for key, val in sorted(vars(args).items()):
if key in ignore:
continue
if isinstance(val, type):
val = val.__name__
if val != parser.get_default(key):
flags.append(key + '-' + str(val).replace(' ', '#'))
return '+'.join(flags)
def parse_args():
parser = argparse.ArgumentParser(description='Dog project training script')
parser.add_argument(
'mode', default='train', nargs='?',
choices=('train', 'test', 'save_feats', 'perplexity',
'nearest_neighbor'))
parser.add_argument('--data', metavar='DIR', default='data',
help='path to dataset')
parser.add_argument('--save', metavar='DIR', default='cache',
help='path to cache directory')
parser.add_argument('--dataset', default='DogClipDataset',
help='Dataset to '
'use for training/test.', type=dataset_class)
parser.add_argument(
'--arch', '-a', metavar='ARCH', default='AlexNetImage2IMU',
help='model to use for training/test.', type=model_class)
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers')
parser.add_argument('--verbose', action='store_true',
help='Level of logging the outputs')
parser.add_argument('--epochs', default=90000, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--break-batch', default=1, type=int,
help='break batches with this factor to fit to memory.')
parser.add_argument('--lrm', default=0.1, type=float, help='learning rate '
'multiplier.')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-1, type=float,
metavar='W', help='weight decay (default: 1e-1)')
parser.add_argument('--reload', default=None, type=str, metavar='PATH',
help='path to latest checkpoint')
parser.add_argument('--no-strict', action='store_false', dest='strict',
help='Loading the weights from another model.')
parser.add_argument('--no-pretrain', action='store_false', dest='pretrain',
help='Initialize the model with random intialization')
parser.add_argument('--image_size', default=224, type=int,
help='Input image size')
parser.add_argument(
'--segmentation_size', default=56, type=int, help=
'Segmentation size for fully convolutional network for walkable surface estimation'
)
parser.add_argument('--seed', default=1, type=int)
parser.add_argument('--trainset_image_list', default='train.json',
help='Train dataset annotation file')
parser.add_argument('--testset_image_list', default='test.json',
help='Test dataset annotation file')
parser.add_argument('--valset_image_list', default='val.json',
help='Validation dataset annotation file')
parser.add_argument('--num_classes', default=8, type=int,
help='Number of classes per IMU')
parser.add_argument('--imus', nargs='+', default=list(range(6)), type=int,
help='List of IMUs to train')
parser.add_argument('--features_dir', default='data/features',
help='Address to read image features for LSTM networks')
parser.add_argument(
'--read_features', action='store_true',
help='Indicate whether read features or use original image')
parser.add_argument('--read_feature_and_image', action='store_true')
parser.add_argument('--use_test_for_val', action='store_true',
help='Use this option to do final evaluation')
parser.add_argument('--no_angle_metric', action='store_true',
help='Skip angular metric for faster training')
parser.add_argument(
'--regression', action='store_true',
help='Regressing the IMU values instead of classification')
parser.add_argument(
'--end2end', action='store_true',
help='End to end training image feature learning and IMU prediction')
parser.add_argument(
'--absolute_regress', action='store_true',
help='Regressing the absolute imu values instead of difference')
parser.add_argument('--single_image_feature', action='store_true',
help='Use single image feature')
parser.add_argument('--save_qualitative', action='store_true')
parser.add_argument(
'--detach_resnet_end2end', action='store_true', help=
'In the end2end network stop backpropagating through feature learning network'
)
parser.add_argument('--attention', dest='use_attention',
action='store_true',
help='Use attention network for LSTM')
parser.add_argument('--experiment_type', default='imu2imu')
parser.add_argument('--input_length', default=0, type=int,
help='Length of the input sequence')
parser.add_argument('--output_length', default=1, type=int,
help='Length of the output sequence')
parser.add_argument('--sequence_length', default=1, type=int,
help='Length of the sequence involved in training')
parser.add_argument('--image_feature', default=1024, type=int,
help='Size of Image features')
parser.add_argument('--hidden_size', default=512, type=int,
help='Size of hidden layers in LSTM')
parser.add_argument('--num_layers', default=1, type=int,
help='Number of layers of LSTM')
parser.add_argument('--step_size', default=10, type=int,
help='Step size for reducing the learning rate')
parser.add_argument('--teacher_forcing', default=0, type=float,
help='Ratio of teacher forcing')
parser.add_argument('--dropout_ratio', default=0.5, type=float)
parser.add_argument(
'--planning_distance', default=3, type=int,
help='Indicates the length of the predicting sequence in Planning network'
)
parser.add_argument('--save_frequency', default=1, type=int,
help='Frequency of saving the model, per epoch')
parser.add_argument(
'--detach_level', default=5, type=int,
help='Indicates how far in FCN network the output will be backpropagated'
) #5 means detach everything 1 means detach nothing #Just for the FCN network
args = parser.parse_args()
args.imu_feature = len(args.imus) * args.num_classes
assert args.batch_size % args.break_batch == 0, "--batch-size must be "\
"divisible by --break-batch."
if args.absolute_regress:
assert args.regression, "Regression must also be true"
# Make log directory
timestamp = str(datetime.datetime.now()).replace(' ', '#').replace(':', '.')
args.save = os.path.join(
args.save, args.arch.__name__,
get_non_default_flags_str(args, parser, 'data', 'save', 'arch',
'reload'), timestamp)
os.makedirs(args.save, exist_ok=True)
setup_logging(os.path.join(args.save, 'log.txt'), args.verbose)
logging.info('Command: {}'.format(' '.join(sys.argv)))
logging.info('Command line arguments parsed: {}'.format(
pprint.pformat(vars(args))))
return args
def get_data_loaders(args):
train_dataset = args.dataset(args, train=True)
val_dataset = args.dataset(args, train=False)
# Do not shuffle dataset in save_feats mode to get consistent order of
# inputs for saving features.
shuffle = (args.mode != 'save_feats')
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size // args.break_batch,
shuffle=shuffle, num_workers=args.workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=args.batch_size // args.break_batch,
shuffle=shuffle, num_workers=args.workers, pin_memory=True)
args.train_loader = train_loader
return train_loader, val_loader
def get_model_and_loss(args):
model = args.arch(args).cuda()
if args.reload is not None:
model.load_state_dict(torch.load(args.reload), strict=args.strict)
loss = model.loss().cuda()
logging.info('Model: {}'.format(model))
logging.info('Loss: {}'.format(loss))
return model, loss
def main():
args = parse_args()
random.seed(args.seed)
torch.manual_seed(args.seed)
logging.info('Reading dataset metadata')
train_loader, val_loader = get_data_loaders(args)
args.relative_centroids = train_loader.dataset.get_relative_centroids()
logging.info('Constructing model')
model, loss = get_model_and_loss(args)
if args.mode == 'train':
optimizer = model.optimizer()
for i in range(args.epochs):
solver.train_one_epoch(model, loss, optimizer, train_loader, i + 1,
args)
solver.test_one_epoch(model, loss, val_loader, i + 1, args)
if i % args.save_frequency == 0:
torch.save(
model.state_dict(),
os.path.join(args.save,
'model_state_{:02d}.pytar'.format(i + 1)))
elif args.mode == 'test':
solver.test_one_epoch(model, loss, val_loader, 0, args)
elif args.mode == 'save_feats':
solver.save_features(model, [train_loader, val_loader], args)
elif args.mode == 'perplexity':
solver.perplexity(model, val_loader, args)
elif args.mode == 'nearest_neighbor':
solver.nearest_neighbor(train_loader, val_loader, args)
else:
raise NotImplementedError("Unsupported mode {}".format(args.mode))
if __name__ == '__main__':
main()