Skip to content

Commit f997e6b

Browse files
committed
STY proper indentation
1 parent 8ad9559 commit f997e6b

File tree

5 files changed

+12
-12
lines changed

5 files changed

+12
-12
lines changed

euler001.hs

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,2 +1,2 @@
11
main = print $ sum $ filter multiple3or5 [1..999]
2-
where multiple3or5 = (\n -> n `rem` 3 == 0 || n `rem` 5 == 0)
2+
where multiple3or5 = (\n -> n `rem` 3 == 0 || n `rem` 5 == 0)

euler002.hs

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
import Data.List
22

33
main = print $ sum [x | x <- takeWhile (< 4000000) fibs, even x]
4-
where fibs = unfoldr (\(a, b) -> Just (a, (b, a+b))) (1, 1)
4+
where fibs = unfoldr (\(a, b) -> Just (a, (b, a+b))) (1, 1)
55

66
{-
77
It turns out there is an extremely elegant, recursive way of generating the

euler003.hs

+4-4
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@ main = print $ maximum $ prime_factors 600851475143
33
prime_factors :: (Integral a) => a -> [a]
44
prime_factors 1 = []
55
prime_factors n
6-
| factor == [] = [n]
7-
| n < (head factor)^2 = [n] -- stop searching if sqrt n < head factor
8-
| otherwise = factor ++ prime_factors (n `div` (head factor))
9-
where factor = take 1 [x | x <- [2..n-1], n `rem` x == 0]
6+
| factor == [] = [n]
7+
| n < (head factor)^2 = [n] -- stop searching if sqrt n < head factor
8+
| otherwise = factor ++ prime_factors (n `div` (head factor))
9+
where factor = take 1 [x | x <- [2..n-1], n `rem` x == 0]

euler004.hs

+2-2
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,3 @@
11
main = print $ maximum palindromes
2-
where palindromes = [x*y | x <- [999,998..1], y <- [999,998..1],
3-
(reverse $ show (x*y)) == (show (x*y))]
2+
where palindromes = [x*y | x <- [999,998..1], y <- [999,998..1],
3+
(reverse $ show (x*y)) == (show (x*y))]

euler005.hs

+4-4
Original file line numberDiff line numberDiff line change
@@ -8,10 +8,10 @@ lcm_primes a b = a ++ (b\\a)
88
prime_factors :: (Integral a) => a -> [a]
99
prime_factors 1 = []
1010
prime_factors n
11-
| factor == [] = [n]
12-
| n < (head factor)^2 = [n] -- stop searching if sqrt n < head factor
13-
| otherwise = factor ++ prime_factors (n `div` (head factor))
14-
where factor = take 1 [x | x <- [2..n-1], n `rem` x == 0]
11+
| factor == [] = [n]
12+
| n < (head factor)^2 = [n] -- stop searching if sqrt n < head factor
13+
| otherwise = factor ++ prime_factors (n `div` (head factor))
14+
where factor = take 1 [x | x <- [2..n-1], n `rem` x == 0]
1515

1616
{-
1717
Naive solution: (takes too long and does not scale)

0 commit comments

Comments
 (0)