-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmy_compute_precision_recall_fmeasure.m
executable file
·196 lines (162 loc) · 5.43 KB
/
my_compute_precision_recall_fmeasure.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
function temp_obj_eval = my_compute_precision_recall_fmeasure(u, u0_GT, u0_SKL_GT)
% 121227: Reza FARRAHI MOGHADDAM and Hossein ZIAEI NAFCHI
% 090519: Reza FARRAHI MOGHADDAM
% used in objective_evaluation_core.m
%
[xm ym] = size(u);
% figure, imshow(u)
%
if (numel(u0_GT) == 0)
u0_GT = NaN * ones([xm ym]);
end
%
if (nargin == 2)
% u0_SKL_GT = NaN * ones([xm ym]);
u0_SKL_GT = ~bwmorph(~u0_GT, 'thin', 'inf');
end
% TP pixels
temp_tp = [u == 0] & [u0_GT == 0];
% FP pixels
temp_fp = [u == 0] & [u0_GT ~= 0];
% FN pixels
temp_fn = [u ~= 0] & [u0_GT == 0];
% TN pixels
temp_tn = [u ~= 0] & [u0_GT ~= 0];
% SKL TP / FN pixels
temp_skl_tp = [u == 0] & [u0_SKL_GT == 0];
temp_skl_fp = [u == 0] & [u0_SKL_GT ~= 0];
temp_skl_fn = [u ~= 0] & [u0_SKL_GT == 0];
temp_skl_tn = [u ~= 0] & [u0_SKL_GT ~= 0];
% counts
count_tp = sum(sum(temp_tp));
count_fp = sum(sum(temp_fp));
count_fn = sum(sum(temp_fn));
count_tn = sum(sum(temp_tn));
count_skl_tp = sum(sum(temp_skl_tp));
count_skl_fp = sum(sum(temp_skl_fp));
count_skl_fn = sum(sum(temp_skl_fn));
count_skl_tn = sum(sum(temp_skl_tn));
% precision
temp_p = count_tp / (count_fp + count_tp);
% recall
temp_r = count_tp / (count_fn + count_tp);
if (temp_r == 0)
temp_r = NaN;
end
% p-recall
temp_pseudo_p = count_skl_tp / (count_skl_fp + count_skl_tp);
temp_pseudo_r = count_skl_tp / (count_skl_fn + count_skl_tp);
if (temp_pseudo_r == 0)
temp_pseudo_r = NaN;
end
% f-measure
temp_f = 100 * 2 * (temp_p * temp_r) / (temp_p + temp_r);
% p-f-measure
temp_pseudo_f = 100 * 2 * (temp_p * temp_pseudo_r) / (temp_p + temp_pseudo_r);
% sensetivity
temp_sens = count_tp / (count_tp + count_fn);
if (temp_sens == 0)
temp_sens = NaN;
end
% specificity
temp_spec = count_tn / (count_tn + count_fp);
if (temp_spec == 0)
temp_spec = NaN;
end
% BCR: Balanced Classification Rate
temp_BCR = 0.5 * (temp_sens + temp_spec);
% AUC: Area Under the Curve
temp_AUC = 0.5 * (temp_sens + temp_spec);
% BER: Balanced Error Rate
temp_BER = 100 * (1 - temp_BCR);
% S-F-measure: harmonic mean of sensetivity and specificity
temp_s_f_measure = 100 * 2 * (temp_sens * temp_spec) / (temp_sens + temp_spec);
% Accuracy: mean of sensetivity and specificity
temp_accu = (count_tp + count_tn) / (count_tp + count_tn + count_fp + count_fn);
% gAccuracy: Geometric mean of sensetivity and specificity
temp_g_accu = sqrt(temp_sens * temp_spec);
% NRM (Negative Rate Metric) (*10^-2)
NR_FN = count_fn / (count_fn + count_tp);
NR_FP = count_fp / (count_fp + count_tn);
temp_NRM = (NR_FN + NR_FP) / 2;
% PSNR
err=sum(sum(temp_fp | temp_fn)) / (xm * ym);
temp_PSNR = 10 * log10( 1 / err);
% DRD: Distance Reciprocal Distortion Metric
blkSize=8; % even number
MaskSize=5; % odd number
u0_GT1 = false(xm + 2, ym + 2);
u0_GT1(2 : xm + 1, 2 : ym + 1) = u0_GT;
intim = cumsum(cumsum(u0_GT1, 1), 2);
NUBN = 0; blkSizeSQR = blkSize ^ 2;
for i= 2 : blkSize : (xm - blkSize + 1)
for j = 2 : blkSize : (ym - blkSize + 1)
blkSum=intim(i + blkSize - 1, j + blkSize - 1) - intim(i - 1, j + blkSize - 1) - intim(i + blkSize - 1, j - 1) + intim(i - 1, j - 1);
if blkSum == 0 || blkSum == blkSizeSQR
else
NUBN = NUBN + 1;
end
end
end
wm = zeros(MaskSize, MaskSize);
ic = (MaskSize + 1) / 2; jc = ic; % center coordinate
for i = 1 : MaskSize
for j = 1 : MaskSize
wm(i, j) = 1 / (sqrt((i - ic) .^ 2 + (j - jc) .^ 2));
end
end
wm(ic, jc) = 0;
wnm = wm ./ (sum(wm(:))); % Normalized weight matrix
u0_GT_Resized = zeros(xm + ic + 1, ym + jc + 1);
u0_GT_Resized(ic : xm + ic - 1, jc : ym + jc - 1) = u0_GT;
u_Resized = zeros(xm + ic + 1, ym + jc + 1);
u_Resized(ic : xm + ic - 1, jc : ym + jc - 1) = u;
temp_fp_Resized = [u_Resized == 0] & [u0_GT_Resized ~= 0];
temp_fn_Resized = [u_Resized ~= 0] & [u0_GT_Resized == 0];
Diff = temp_fp_Resized | temp_fn_Resized;
[xm2 ym2] = size(Diff);
SumDRDk = 0;
for i = ic : xm2 - ic + 1
for j = jc : ym2 - jc + 1
if Diff(i, j) == 1
Local_Diff = my_xor_infile(u0_GT_Resized(i - ic + 1 : i + ic -1 , j - ic + 1 : j + ic - 1), u_Resized(i, j));
DRDk = sum(sum(Local_Diff.* wnm));
SumDRDk = SumDRDk + DRDk;
end
end
end
temp_DRD = SumDRDk / NUBN;
% MPM: Misclassification penalty metric
Contour = bwmorph(~u0_GT, 'remove');
Dist = bwdist(Contour, 'Chessboard');
D = sum(Dist(:));
MP_FN = sum(Dist(temp_fn)) / D;
MP_FP = sum(Dist(temp_fp)) / D;
temp_MPM = (MP_FN + MP_FP) / 2;
% output
%
temp_obj_eval.Precision = temp_p;
temp_obj_eval.Recall = temp_r;
temp_obj_eval.Fmeasure = temp_f;
temp_obj_eval.P_Precision = temp_pseudo_p;
temp_obj_eval.P_Recall = temp_pseudo_r;
temp_obj_eval.P_Fmeasure = temp_pseudo_f;
temp_obj_eval.Sensitivity = temp_sens;
temp_obj_eval.Specificity = temp_spec;
temp_obj_eval.BCR = temp_BCR;
temp_obj_eval.AUC = temp_AUC;
temp_obj_eval.BER = temp_BER;
temp_obj_eval.SFmeasure = temp_s_f_measure;
temp_obj_eval.Accuracy = temp_accu;
temp_obj_eval.GAccuracy = temp_g_accu;
temp_obj_eval.NRM = temp_NRM;
temp_obj_eval.PSNR = temp_PSNR;
temp_obj_eval.DRD = temp_DRD;
temp_obj_eval.MPM = temp_MPM;
end
function temp_xor_infile = my_xor_infile(u_infile, u0_GT_infile)
% Reza
temp_fp_infile = [u_infile == 0] & [u0_GT_infile ~= 0];
temp_fn_infile = [u_infile ~= 0] & [u0_GT_infile == 0];
temp_xor_infile = temp_fp_infile | temp_fn_infile;
end