-
Notifications
You must be signed in to change notification settings - Fork 283
/
Copy pathclient.py
437 lines (381 loc) · 16.9 KB
/
client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
# This file was auto-generated by Fern from our API Definition.
import typing
from ..core.client_wrapper import SyncClientWrapper
from .. import core
from ..core.request_options import RequestOptions
from ..types.speech_to_text_chunk_response_model import SpeechToTextChunkResponseModel
from ..core.unchecked_base_model import construct_type
from ..errors.unprocessable_entity_error import UnprocessableEntityError
from ..types.http_validation_error import HttpValidationError
from json.decoder import JSONDecodeError
from ..core.api_error import ApiError
from ..types.speech_to_text_stream_response_model import SpeechToTextStreamResponseModel
import json
from ..errors.bad_request_error import BadRequestError
from ..core.client_wrapper import AsyncClientWrapper
# this is used as the default value for optional parameters
OMIT = typing.cast(typing.Any, ...)
class SpeechToTextClient:
def __init__(self, *, client_wrapper: SyncClientWrapper):
self._client_wrapper = client_wrapper
def convert(
self,
*,
model_id: str,
file: typing.Optional[core.File] = OMIT,
language_code: typing.Optional[str] = OMIT,
tag_audio_events: typing.Optional[bool] = OMIT,
num_speakers: typing.Optional[int] = OMIT,
request_options: typing.Optional[RequestOptions] = None,
) -> SpeechToTextChunkResponseModel:
"""
Transcribe an audio or video file.
Parameters
----------
model_id : str
The ID of the model to use for transcription, currently only 'scribe_v1' is available.
file : typing.Optional[core.File]
See core.File for more documentation
language_code : typing.Optional[str]
An ISO-639-1 or ISO-639-3 language_code corresponding to the language of the audio file. Can sometimes improve transcription performance if known beforehand. Defaults to null, in this case the language is predicted automatically.
tag_audio_events : typing.Optional[bool]
Whether to tag audio events like (laughter), (footsteps), etc. in the transcription.
num_speakers : typing.Optional[int]
The maximum amount of speakers talking in the uploaded file. Can help with predicting who speaks when. The maximum amount of speakers that can be predicted is 31. Defaults to null, in this case the amount of speakers is set to the maximum value the model supports.
request_options : typing.Optional[RequestOptions]
Request-specific configuration.
Returns
-------
SpeechToTextChunkResponseModel
Successful Response
Examples
--------
from elevenlabs import ElevenLabs
client = ElevenLabs(
api_key="YOUR_API_KEY",
)
client.speech_to_text.convert(
model_id="model_id",
)
"""
_response = self._client_wrapper.httpx_client.request(
"v1/speech-to-text",
method="POST",
data={
"model_id": model_id,
"language_code": language_code,
"tag_audio_events": tag_audio_events,
"num_speakers": num_speakers,
},
files={
"file": file,
},
request_options=request_options,
omit=OMIT,
)
try:
if 200 <= _response.status_code < 300:
return typing.cast(
SpeechToTextChunkResponseModel,
construct_type(
type_=SpeechToTextChunkResponseModel, # type: ignore
object_=_response.json(),
),
)
if _response.status_code == 422:
raise UnprocessableEntityError(
typing.cast(
HttpValidationError,
construct_type(
type_=HttpValidationError, # type: ignore
object_=_response.json(),
),
)
)
_response_json = _response.json()
except JSONDecodeError:
raise ApiError(status_code=_response.status_code, body=_response.text)
raise ApiError(status_code=_response.status_code, body=_response_json)
def convert_as_stream(
self,
*,
model_id: str,
file: typing.Optional[core.File] = OMIT,
language_code: typing.Optional[str] = OMIT,
tag_audio_events: typing.Optional[bool] = OMIT,
num_speakers: typing.Optional[int] = OMIT,
request_options: typing.Optional[RequestOptions] = None,
) -> typing.Iterator[SpeechToTextStreamResponseModel]:
"""
Transcribe an audio or video file with streaming response. Returns chunks of transcription as they become available, with each chunk separated by double newlines (\n\n).
Parameters
----------
model_id : str
The ID of the model to use for transcription, currently only 'scribe_v1' is available.
file : typing.Optional[core.File]
See core.File for more documentation
language_code : typing.Optional[str]
An ISO-639-1 or ISO-639-3 language_code corresponding to the language of the audio file. Can sometimes improve transcription performance if known beforehand. Defaults to null, in this case the language is predicted automatically.
tag_audio_events : typing.Optional[bool]
Whether to tag audio events like (laughter), (footsteps), etc. in the transcription.
num_speakers : typing.Optional[int]
The maximum amount of speakers talking in the uploaded file. Can help with predicting who speaks when. The maximum amount of speakers that can be predicted is 31. Defaults to null, in this case the amount of speakers is set to the maximum value the model supports.
request_options : typing.Optional[RequestOptions]
Request-specific configuration.
Yields
------
typing.Iterator[SpeechToTextStreamResponseModel]
Stream of transcription chunks
Examples
--------
from elevenlabs import ElevenLabs
client = ElevenLabs(
api_key="YOUR_API_KEY",
)
response = client.speech_to_text.convert_as_stream(
model_id="model_id",
)
for chunk in response:
yield chunk
"""
with self._client_wrapper.httpx_client.stream(
"v1/speech-to-text/stream",
method="POST",
data={
"model_id": model_id,
"language_code": language_code,
"tag_audio_events": tag_audio_events,
"num_speakers": num_speakers,
},
files={
"file": file,
},
request_options=request_options,
omit=OMIT,
) as _response:
try:
if 200 <= _response.status_code < 300:
for _text in _response.iter_lines():
try:
if len(_text) == 0:
continue
yield typing.cast(
SpeechToTextStreamResponseModel,
construct_type(
type_=SpeechToTextStreamResponseModel, # type: ignore
object_=json.loads(_text),
),
)
except:
pass
return
_response.read()
if _response.status_code == 400:
raise BadRequestError(
typing.cast(
typing.Optional[typing.Any],
construct_type(
type_=typing.Optional[typing.Any], # type: ignore
object_=_response.json(),
),
)
)
if _response.status_code == 422:
raise UnprocessableEntityError(
typing.cast(
HttpValidationError,
construct_type(
type_=HttpValidationError, # type: ignore
object_=_response.json(),
),
)
)
_response_json = _response.json()
except JSONDecodeError:
raise ApiError(status_code=_response.status_code, body=_response.text)
raise ApiError(status_code=_response.status_code, body=_response_json)
class AsyncSpeechToTextClient:
def __init__(self, *, client_wrapper: AsyncClientWrapper):
self._client_wrapper = client_wrapper
async def convert(
self,
*,
model_id: str,
file: typing.Optional[core.File] = OMIT,
language_code: typing.Optional[str] = OMIT,
tag_audio_events: typing.Optional[bool] = OMIT,
num_speakers: typing.Optional[int] = OMIT,
request_options: typing.Optional[RequestOptions] = None,
) -> SpeechToTextChunkResponseModel:
"""
Transcribe an audio or video file.
Parameters
----------
model_id : str
The ID of the model to use for transcription, currently only 'scribe_v1' is available.
file : typing.Optional[core.File]
See core.File for more documentation
language_code : typing.Optional[str]
An ISO-639-1 or ISO-639-3 language_code corresponding to the language of the audio file. Can sometimes improve transcription performance if known beforehand. Defaults to null, in this case the language is predicted automatically.
tag_audio_events : typing.Optional[bool]
Whether to tag audio events like (laughter), (footsteps), etc. in the transcription.
num_speakers : typing.Optional[int]
The maximum amount of speakers talking in the uploaded file. Can help with predicting who speaks when. The maximum amount of speakers that can be predicted is 31. Defaults to null, in this case the amount of speakers is set to the maximum value the model supports.
request_options : typing.Optional[RequestOptions]
Request-specific configuration.
Returns
-------
SpeechToTextChunkResponseModel
Successful Response
Examples
--------
import asyncio
from elevenlabs import AsyncElevenLabs
client = AsyncElevenLabs(
api_key="YOUR_API_KEY",
)
async def main() -> None:
await client.speech_to_text.convert(
model_id="model_id",
)
asyncio.run(main())
"""
_response = await self._client_wrapper.httpx_client.request(
"v1/speech-to-text",
method="POST",
data={
"model_id": model_id,
"language_code": language_code,
"tag_audio_events": tag_audio_events,
"num_speakers": num_speakers,
},
files={
"file": file,
},
request_options=request_options,
omit=OMIT,
)
try:
if 200 <= _response.status_code < 300:
return typing.cast(
SpeechToTextChunkResponseModel,
construct_type(
type_=SpeechToTextChunkResponseModel, # type: ignore
object_=_response.json(),
),
)
if _response.status_code == 422:
raise UnprocessableEntityError(
typing.cast(
HttpValidationError,
construct_type(
type_=HttpValidationError, # type: ignore
object_=_response.json(),
),
)
)
_response_json = _response.json()
except JSONDecodeError:
raise ApiError(status_code=_response.status_code, body=_response.text)
raise ApiError(status_code=_response.status_code, body=_response_json)
async def convert_as_stream(
self,
*,
model_id: str,
file: typing.Optional[core.File] = OMIT,
language_code: typing.Optional[str] = OMIT,
tag_audio_events: typing.Optional[bool] = OMIT,
num_speakers: typing.Optional[int] = OMIT,
request_options: typing.Optional[RequestOptions] = None,
) -> typing.AsyncIterator[SpeechToTextStreamResponseModel]:
"""
Transcribe an audio or video file with streaming response. Returns chunks of transcription as they become available, with each chunk separated by double newlines (\n\n).
Parameters
----------
model_id : str
The ID of the model to use for transcription, currently only 'scribe_v1' is available.
file : typing.Optional[core.File]
See core.File for more documentation
language_code : typing.Optional[str]
An ISO-639-1 or ISO-639-3 language_code corresponding to the language of the audio file. Can sometimes improve transcription performance if known beforehand. Defaults to null, in this case the language is predicted automatically.
tag_audio_events : typing.Optional[bool]
Whether to tag audio events like (laughter), (footsteps), etc. in the transcription.
num_speakers : typing.Optional[int]
The maximum amount of speakers talking in the uploaded file. Can help with predicting who speaks when. The maximum amount of speakers that can be predicted is 31. Defaults to null, in this case the amount of speakers is set to the maximum value the model supports.
request_options : typing.Optional[RequestOptions]
Request-specific configuration.
Yields
------
typing.AsyncIterator[SpeechToTextStreamResponseModel]
Stream of transcription chunks
Examples
--------
import asyncio
from elevenlabs import AsyncElevenLabs
client = AsyncElevenLabs(
api_key="YOUR_API_KEY",
)
async def main() -> None:
response = await client.speech_to_text.convert_as_stream(
model_id="model_id",
)
async for chunk in response:
yield chunk
asyncio.run(main())
"""
async with self._client_wrapper.httpx_client.stream(
"v1/speech-to-text/stream",
method="POST",
data={
"model_id": model_id,
"language_code": language_code,
"tag_audio_events": tag_audio_events,
"num_speakers": num_speakers,
},
files={
"file": file,
},
request_options=request_options,
omit=OMIT,
) as _response:
try:
if 200 <= _response.status_code < 300:
async for _text in _response.aiter_lines():
try:
if len(_text) == 0:
continue
yield typing.cast(
SpeechToTextStreamResponseModel,
construct_type(
type_=SpeechToTextStreamResponseModel, # type: ignore
object_=json.loads(_text),
),
)
except:
pass
return
await _response.aread()
if _response.status_code == 400:
raise BadRequestError(
typing.cast(
typing.Optional[typing.Any],
construct_type(
type_=typing.Optional[typing.Any], # type: ignore
object_=_response.json(),
),
)
)
if _response.status_code == 422:
raise UnprocessableEntityError(
typing.cast(
HttpValidationError,
construct_type(
type_=HttpValidationError, # type: ignore
object_=_response.json(),
),
)
)
_response_json = _response.json()
except JSONDecodeError:
raise ApiError(status_code=_response.status_code, body=_response.text)
raise ApiError(status_code=_response.status_code, body=_response_json)