-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchain.py
36 lines (31 loc) · 1.01 KB
/
chain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from decimal import *
import random
from random import shuffle
import numpy as np
def chainer(sub, bag, N):
chain = [False]*(N+2)
for i in xrange(0, N-1):
j = bag[i]
chain[j] = True
if not (chain[j-1] or chain[j+1]):
sub+=1
return sub
def sampler(N):
sample = np.empty(10000000)
for i in xrange(0, 10000000):
draw = range(1, (N+1))
random.shuffle(draw)
sample[i] = chainer(0, draw, N)
return sample
m8 = np.mean(sampler(8), dtype=np.float64)
m16 = np.mean(sampler(16), dtype=np.float64)
m32 = np.mean(sampler(32), dtype=np.float64)
s8 = np.std(sampler(8))
s16 = np.std(sampler(16))
s32 = np.std(sampler(32))
print "Mean of M for N=8: %(m)s" %{"m": Decimal(m8)}
print "Mean of M for N=16: %(m)s" %{"m": Decimal(m16)}
print "Mean of M for N=32: %(m)s" %{"m": Decimal(m32)}
print "Standard Deviation of M for N=8: %(s)s" %{"s": s8}
print "Standard Deviation of M for N=16: %(s)s" %{"s": s16}
print "Standard Deviation of M for N=32: %(s)s" %{"s": s32}