-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathSortingAlgorithms.py
108 lines (100 loc) · 4.21 KB
/
SortingAlgorithms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
"""
about:
This code was written by Mostafa El-Marzouki @iSuperMostafa
------------------------------------------------------------
summery:
this project is a performance comparison among bunch of sorting algorithms
it computes the time used in each algorithm to sort list of: Sorted numbers
and Unsorted numbers
input: the size of the numbers list
output: the time each algorithm take to sort the numbers in ms
"""
import random
class SortingAlgorithms:
# Time Complexity of Bubble Sort:
# Best: O(n^2), Average: O(n^2), Worst: O(n^2)
def BubbleSort(self, Numbers):
for i in range(len(Numbers)):
for j in range(len(Numbers)-1, i, -1):
if (Numbers[j] < Numbers[j-1]):
Numbers[j], Numbers[j - 1] = Numbers[j - 1], Numbers[j]
# Time Complexity of Selection Sort:
# Best: O(n^2), Average: O(n^2), Worst: O(n^2)
def SelectionSort(self, Numbers):
for i in range(len(Numbers)):
Min = i
for j in range(i+1, len(Numbers)):
if Numbers[j] < Numbers[Min]:
Min = j
Numbers[i], Numbers[Min] = Numbers[Min], Numbers[i]
# Time Complexity of Insertion Sort:
# Best: O(n), Average: O(n^2), Worst: O(n^2)
def InsertionSort(self, Numbers):
for i in range(len(Numbers)):
Temp = Numbers[i]
j = i
while j > 0 and Temp < Numbers[j-1]:
Numbers[j] = Numbers[j-1]
j -= 1
Numbers[j] = Temp
# Time Complexity of Shell Sort:
# Best: O(n), Average: O(n),Worst: O(n^2)
def ShellSort(self, Numbers):
Gap = len(Numbers)//2
while Gap:
for i in range(len(Numbers)):
j = i
Temp = Numbers[i]
while j >= Gap and Numbers[j-Gap] > Temp:
Numbers[j] = Numbers[j-Gap]
j -= Gap
Numbers[j] = Temp
Gap = Gap // 2 if Gap // 2 else (0 if Gap == 1 else 1)
# Time Complexity of Merge Sort: O(nlog(n))
def MergeSort(self, Numbers):
if len(Numbers) > 1:
Center = len(Numbers)//2
LeftHandSide = Numbers[:Center]
RightHandSide = Numbers[Center:]
self.MergeSort(LeftHandSide)
self.MergeSort(RightHandSide)
i = 0
j = 0
k = 0
while i < len(LeftHandSide) and j < len(RightHandSide):
if LeftHandSide[i] < RightHandSide[j]:
Numbers[k] = LeftHandSide[i]
i = i + 1
else:
Numbers[k] = RightHandSide[j]
j = j + 1
k = k + 1
while i < len(LeftHandSide):
Numbers[k] = LeftHandSide[i]
i = i + 1
k = k + 1
while j < len(RightHandSide):
Numbers[k] = RightHandSide[j]
j = j + 1
k = k + 1
# Time Complexity of Quick Sort:
# Best: O(nlog(n)), Average: O(nlog(n)), Worst: O(n^2)
def Partition(self, Values, LeftHandSide, RightHandSide):
def partition(Values, LeftHandSide, RightHandSide, PivotIndex):
pivot = Values[PivotIndex]
Values[RightHandSide], Values[PivotIndex] = Values[PivotIndex], Values[RightHandSide]
storeidx = LeftHandSide
for idx in range(LeftHandSide, RightHandSide):
if Values[idx] < pivot:
Values[idx], Values[storeidx] = Values[storeidx], Values[idx]
storeidx += 1
Values[storeidx], Values[RightHandSide] = Values[RightHandSide], Values[storeidx]
return storeidx
if RightHandSide > LeftHandSide:
PivotIndex = random.randint(LeftHandSide, RightHandSide)
PivotIndex = partition(Values, LeftHandSide, RightHandSide, PivotIndex)
self.Partition(Values, LeftHandSide, PivotIndex)
self.Partition(Values, PivotIndex + 1, RightHandSide)
return Values
def QuickSort(self, Numbers):
return self.Partition(Numbers, 0, len(Numbers) - 1)