-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_ori.py
179 lines (153 loc) · 5.06 KB
/
main_ori.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import argparse
import os
import torch
import yaml
from ignite.contrib import metrics
from sklearn.metrics import roc_auc_score
import constants as const
import dataset
import fastflow
import utils
def build_train_data_loader(args, config):
train_dataset = dataset.MVTecDataset(
root=args.data,
category=args.category,
input_size=config["input_size"],
is_train=True,
)
return torch.utils.data.DataLoader(
train_dataset,
batch_size=const.BATCH_SIZE,
shuffle=True,
num_workers=4,
drop_last=True,
)
def build_test_data_loader(args, config):
test_dataset = dataset.MVTecDataset(
root=args.data,
category=args.category,
input_size=config["input_size"],
is_train=False,
)
return torch.utils.data.DataLoader(
test_dataset,
batch_size=const.BATCH_SIZE,
shuffle=False,
num_workers=4,
drop_last=False,
)
def build_model(config):
model = fastflow.FastFlow(
backbone_name=config["backbone_name"],
flow_steps=config["flow_step"],
input_size=config["input_size"],
conv3x3_only=config["conv3x3_only"],
hidden_ratio=config["hidden_ratio"],
)
print(
"Model A.D. Param#: {}".format(
sum(p.numel() for p in model.parameters() if p.requires_grad)
)
)
return model
def build_optimizer(model):
return torch.optim.Adam(
model.parameters(), lr=const.LR, weight_decay=const.WEIGHT_DECAY
)
def train_one_epoch(dataloader, model, optimizer, epoch):
model.train()
loss_meter = utils.AverageMeter()
for step, data in enumerate(dataloader):
# forward
data = data.cuda()
ret = model(data)
loss = ret["loss"]
# backward
optimizer.zero_grad()
loss.backward()
optimizer.step()
# log
loss_meter.update(loss.item())
if (step + 1) % const.LOG_INTERVAL == 0 or (step + 1) == len(dataloader):
print(
"Epoch {} - Step {}: loss = {:.3f}({:.3f})".format(
epoch + 1, step + 1, loss_meter.val, loss_meter.avg
)
)
def eval_once(dataloader, model):
model.eval()
Predict = []
Target = []
for data, targets, _ in dataloader:
data, targets = data.cuda(), targets.cuda()
with torch.no_grad():
ret = model(data)
outputs = ret["anomaly_map"].cpu().detach()
outputs = outputs.flatten().cpu().numpy()
targets = targets.flatten().int().cpu().numpy()
Predict.append(outputs.tolist())
Target.append(targets.tolist())
Predict = [item for sublist in Predict for item in sublist]
Target = [item for sublist in Target for item in sublist]
auroc = roc_auc_score(Target, Predict)
print("AUROC: {}".format(auroc))
def train(args):
os.makedirs(const.CHECKPOINT_DIR, exist_ok=True)
checkpoint_dir = os.path.join(
const.CHECKPOINT_DIR, "exp%d" % len(os.listdir(const.CHECKPOINT_DIR))
)
os.makedirs(checkpoint_dir, exist_ok=True)
config = yaml.safe_load(open(args.config, "r"))
model = build_model(config)
optimizer = build_optimizer(model)
train_dataloader = build_train_data_loader(args, config)
test_dataloader = build_test_data_loader(args, config)
model.cuda()
for epoch in range(const.NUM_EPOCHS):
train_one_epoch(train_dataloader, model, optimizer, epoch)
if (epoch + 1) % const.EVAL_INTERVAL == 0:
eval_once(test_dataloader, model)
if (epoch + 1) % const.CHECKPOINT_INTERVAL == 0:
torch.save(
{
"epoch": epoch,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
},
os.path.join(checkpoint_dir, "%d.pt" % epoch),
)
def evaluate(args):
config = yaml.safe_load(open(args.config, "r"))
model = build_model(config)
checkpoint = torch.load(args.checkpoint)
model.load_state_dict(checkpoint["model_state_dict"])
test_dataloader = build_test_data_loader(args, config)
model.cuda()
eval_once(test_dataloader, model)
def parse_args():
parser = argparse.ArgumentParser(description="Train FastFlow on MVTec-AD dataset")
parser.add_argument(
"-cfg", "--config", type=str, required=True, help="path to config file"
)
parser.add_argument("--data", type=str, required=True, help="path to mvtec folder")
parser.add_argument(
"-cat",
"--category",
type=str,
choices=const.MVTEC_CATEGORIES,
required=True,
help="category name in mvtec",
)
parser.add_argument("--eval", action="store_true", help="run eval only")
parser.add_argument(
"-ckpt", "--checkpoint", type=str, help="path to load checkpoint"
)
args = parser.parse_args()
return args
if __name__ == "__main__":
print('IN MAIN ORI')
args = parse_args()
if args.eval:
evaluate(args)
else:
train(args)