-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMapAticality.py
176 lines (157 loc) · 6.64 KB
/
MapAticality.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import pandas as pd
import cv2
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from IPython.display import Image, display
import seaborn as sns
import PIL
import PIL.Image
import numpy as np
import os
import io
import umap
import matplotlib
import shutil
import argparse
parser = argparse.ArgumentParser(description='Map MIL Scores')
parser.add_argument('--prob_file', type=str, default='', help='path to probability.csv')
parser.add_argument('--path_tne_tiles', type=str, default='/data/gcs/lungNENomics/work/MathianE/Tiles_512_512_1802', help='path to tne tiles main folder')
parser.add_argument('--path_NL_tiles', type=str, default='/data/gcs/lungNENomics/work/MathianE/Tiles_512_512_NormalLungHENorm', help='path to normal lung tiles main folder')
parser.add_argument('--path_full_LNEN_slides', type=str, default='/data/gcs/lungNENomics/work/MathianE/FullSlidesToJpegHENormHighQuality/', help='path to full LNEN WSI main folder')
parser.add_argument('--path_full_NL_slides', type=str, default='/data/gcs/lungNENomics/work/MathianE/FullSlidesToJpegHENormHighQualityNormalLung/', help='path to full NL WSI main folder')
parser.add_argument('--outputdir', type=str, default='', help='path to output directory')
args = parser.parse_args()
pred_file = args.prob_file #'EfficientNetb2_NormalTumor_TrainingInf/probability.csv'
df_pred_test = pd.read_csv(pred_file, index_col='Sample')
print(df_pred_test.head(), '\n\n\n' , df_pred_test.columns, df_pred_test.index)
outputdir = args.outputdir
full_LNEN_WSI = args.path_full_LNEN_slides
full_NL_WSI = args.path_full_NL_slides
try:
os.mkdir(outputdir)
except:
print('ResMap already created ')
sample = []
x = []
y = []
for i in range(df_pred_test.shape[0]):
filen = df_pred_test.iloc[i,0]
sample_c = df_pred_test.index[i]
x_c = int(filen.split('/')[-1].split('_')[1])
try:
y_c = int(filen.split('/')[-1].split('_')[-1].split('.')[0])
except:
if filen.split('/')[-1].split('_')[-1].split('.')[0].find('flip') != -1:
y_c = int(filen.split('/')[-1].split('_')[-1].split('.')[0].split('flip')[0])
else:
y_c = int(filen.split('/')[-1].split('_')[-1].split('.')[0].split('rotated')[0])
sample.append(sample_c)
x.append(x_c)
y.append(y_c)
df_pred_test['sample'] = sample
df_pred_test['x'] = x
df_pred_test['y'] = y
print('head ', df_pred_test.head(), '\n\n')
sample_maxX_maxY = {}
path_main_TNE = args.path_tne_tiles
path_main_NL = args.path_NL_tiles
for sample in set(df_pred_test['sample']):
if sample.find('TNE')!= -1:
try:
os.mkdir(os.path.join(outputdir, sample))
except:
print('sample_folder created')
path_main = path_main_TNE
elif sample.find('NL')!= -1:
try:
os.mkdir(os.path.join(outputdir, sample))
except:
print('sample_folder created')
path_main = path_main_NL
sample_folder = os.path.join(path_main, sample)
xmax = 0
ymax = 0
for folder in os.listdir(sample_folder):
tiles_p = os.path.join(path_main, sample, folder)
for tiles_l in os.listdir(tiles_p):
xmax_c = int(tiles_l.split('_')[1])
ymax_c = int(tiles_l.split('_')[2].split('.')[0])
if xmax < xmax_c:
xmax = xmax_c
else:
xmax = xmax
if ymax < ymax_c:
ymax = ymax_c
else:
ymax = ymax
sample_maxX_maxY[sample] = [xmax, ymax]
for k in sample_maxX_maxY.keys():
if k in list(df_pred_test['sample']):
w = tuple(sample_maxX_maxY[k])[0] + 924
h = tuple(sample_maxX_maxY[k])[1] + 924
seq = 924
W = len(list(range(1, w, seq)))
H = len(list(range(1, h, seq)))
mat_prob_atypical = np.zeros((W*10, H*10)) -1
mat_prob_norm_atypical = np.zeros((W*10, H*10)) -1
df_test_pred_s = df_pred_test[df_pred_test['sample'] == k]
min_p = df_test_pred_s['probability'].min()
max_p = df_test_pred_s['probability'].max()
df_test_pred_s['prob_norm'] = df_test_pred_s['probability'] - min_p / (max_p - min_p)
#print(df_test_pred_s.head())
for i in range(df_test_pred_s.shape[0]):
x_ = df_test_pred_s.iloc[i,:]['x']
y_ = df_test_pred_s.iloc[i,:]['y']
mat_prob_atypical[x_ // 924 * 10 :x_ // 924 *10 + 10 , y_ // 924 * 10 :y_ // 924 * 10 + 10 ]= df_test_pred_s.iloc[i,2]
mat_prob_norm_atypical[x_ // 924 * 10 :x_ // 924 *10 + 10 , y_ // 924 * 10 :y_ // 924 * 10 + 10 ]= df_test_pred_s.iloc[i,6]
try:
# Full WSI
if k.find('TNE') != -1:
get_full_img = full_LNEN_WSI + k + '.jpg'
print('get_full_img ', get_full_img)
elif k.find('NL') != -1:
get_full_img = full_NL_WSI + k + '.jpg'
print('get_full_img ', get_full_img)
im = cv2.imread(get_full_img)
fig=plt.figure(1,figsize=(15,15))
plt.imshow(im.astype('uint8'))
types = list(df_pred_test[df_pred_test['sample'] == k].iloc[:,1])[0]
if types == 1:
typesN = 'Normal'
elif types == 0:
typesN = 'Tumoral'
else:
typesN = 'Normal'
plt.title('WSI_{}_{}'.format(k,typesN))
fig.savefig(os.path.join(outputdir, k,'WSI_{}_{}.png'.format(k, typesN)), dpi=fig.dpi)
plt.close()
except:
print('WSI not available')
try:
# ATypical
color_map = plt.cm.get_cmap('coolwarm')
fig=plt.figure(1,figsize=(15,15))
plt.matshow(mat_prob_atypical, cmap=color_map,
interpolation='none', fignum=1)
mtitle = 'Normal tiles scores sample {} '.format(k)
plt.title(mtitle)
plt.colorbar()
fig.savefig(os.path.join(outputdir, k,'Normality_tiles_map_{}.png'.format(k)), dpi=fig.dpi)
plt.colorbar()
plt.close()
except:
print('Fail atypucal map')
try:
# ATypical NORM
color_map = plt.cm.get_cmap('coolwarm')
fig=plt.figure(1,figsize=(15,15))
plt.matshow(mat_prob_norm_atypical, cmap=color_map,
interpolation='none', fignum=1)
mtitle = 'Normal tiles scores sample {} '.format(k)
plt.title(mtitle)
plt.colorbar()
fig.savefig(os.path.join(outputdir, k,'Normality_tiles_map_norm_{}.png'.format(k)), dpi=fig.dpi)
plt.colorbar()
plt.close()
except:
print('Atypical map norm fail')