-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRNN_train.py
333 lines (275 loc) · 12.3 KB
/
RNN_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import os
import sys
import cv2
#import openslide
from PIL import Image
import numpy as np
import json
import random
import argparse
import torch
import torch.nn as nn
import torch.utils.data as data
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import torchvision.transforms as transforms
import torchvision.models as models
parser = argparse.ArgumentParser(description='MIL-nature-medicine-2019 RNN aggregator training script')
parser.add_argument('--train_lib', type=str, default='', help='path to train MIL library binary')
parser.add_argument('--val_lib', type=str, default='', help='path to validation MIL library binary. If present.')
parser.add_argument('--output', type=str, default='.', help='name of output file')
parser.add_argument('--batch_size', type=int, default=128, help='mini-batch size (default: 128)')
parser.add_argument('--nepochs', type=int, default=100, help='number of epochs')
parser.add_argument('--workers', default=4, type=int, help='number of data loading workers (default: 4)')
parser.add_argument('--s', default=10, type=int, help='how many top k tiles to consider (default: 10)')
parser.add_argument('--ndims', default=128, type=int, help='length of hidden representation (default: 128)')
parser.add_argument('--model', type=str, help='path to trained model checkpoint')
parser.add_argument('--weights', default=0.5, type=float, help='unbalanced positive class weight (default: 0.5, balanced classes)')
parser.add_argument('--shuffle', default=False, action='store_true', help='to shuffle order of sequence')
best_acc = 0
def main():
global args, best_acc
args = parser.parse_args()
#load libraries
normalize = transforms.Normalize(mean=[0.5,0.5,0.5],std=[0.1,0.1,0.1])
trans = transforms.Compose([
transforms.ToTensor(),
normalize
])
train_dset = rnndata(args.train_lib, args.s, trans)
train_loader = torch.utils.data.DataLoader(
train_dset,
batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=False)
val_dset = rnndata(args.val_lib, args.s, trans)
val_loader = torch.utils.data.DataLoader(
val_dset,
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=False)
#make model
embedder = ResNetEncoder(args.model)
for param in embedder.parameters():
param.requires_grad = False
embedder = embedder.cuda()
embedder.eval()
rnn = rnn_single(args.ndims)
rnn = rnn.cuda()
#optimization
if args.weights==0.5:
criterion = nn.CrossEntropyLoss().cuda()
else:
w = torch.Tensor([1-args.weights,args.weights])
criterion = nn.CrossEntropyLoss(w).cuda()
optimizer = optim.SGD(rnn.parameters(), 0.1, momentum=0.9, dampening=0, weight_decay=1e-4, nesterov=True)
cudnn.benchmark = True
fconv = open(os.path.join(args.output, 'convergence_{}.csv'.format(str(args.s))), 'w')
fconv.write('epoch,train.loss,train.fpr,train.fnr,val.loss,val.fpr,val.fnr\n')
fconv.close()
#
last_epoch_since_improvement = 0
for epoch in range(args.nepochs):
if last_epoch_since_improvement <= 20:
train_loss, train_fpr, train_fnr = train_single(epoch, embedder, rnn, train_loader, criterion, optimizer)
val_loss, val_fpr, val_fnr = test_single(epoch, embedder, rnn, val_loader, criterion)
fconv = open(os.path.join(args.output,'convergence_{}.csv'.format(str(args.s))), 'a')
fconv.write('{},{},{},{},{},{},{}\n'.format(epoch+1, train_loss, train_fpr, train_fnr, val_loss, val_fpr, val_fnr))
fconv.close()
val_err = (val_fpr + val_fnr)/2
if 1-val_err >= best_acc:
if 1-val_err - best_acc > .05:
last_epoch_since_improvement = 0
best_acc = 1-val_err
obj = {
'epoch': epoch+1,
'state_dict': rnn.state_dict()
}
torch.save(obj, os.path.join(args.output,'rnn_checkpoint_best_{}_best_acc_{}.pth'.format(str(args.s), str(round(best_acc, 2)))))
else:
print('last_epoch_since_improvement ', last_epoch_since_improvement)
last_epoch_since_improvement += 1
else:
break
def train_single(epoch, embedder, rnn, loader, criterion, optimizer):
rnn.train()
running_loss = 0.
running_fps = 0.
running_fns = 0.
for i,(inputs,target) in enumerate(loader):
print('Training - Epoch: [{}/{}]\tBatch: [{}/{}]'.format(epoch+1, args.nepochs, i+1, len(loader)))
batch_size = inputs[0].size(0)
rnn.zero_grad()
state = rnn.init_hidden(batch_size).cuda()
print('state ', state.size())
for s in range(len(inputs)):
input = inputs[s].cuda()
_, input = embedder(input)
output, state = rnn(input, state)
target = target.cuda()
loss = criterion(output, target)
loss.backward()
optimizer.step()
running_loss += loss.item()*target.size(0)
fps, fns = errors(output.detach(), target.cpu())
running_fps += fps
running_fns += fns
running_loss = running_loss/len(loader.dataset)
running_fps = running_fps/(np.array(loader.dataset.targets)==0).sum()
running_fns = running_fns/(np.array(loader.dataset.targets)==1).sum()
print('Training - Epoch: [{}/{}]\tLoss: {}\tFPR: {}\tFNR: {}'.format(epoch+1, args.nepochs, running_loss, running_fps, running_fns))
return running_loss, running_fps, running_fns
def test_single(epoch, embedder, rnn, loader, criterion):
rnn.eval()
running_loss = 0.
running_fps = 0.
running_fns = 0.
with torch.no_grad():
for i,(inputs,target) in enumerate(loader):
print('Validating - Epoch: [{}/{}]\tBatch: [{}/{}]'.format(epoch+1,args.nepochs,i+1,len(loader)))
batch_size = inputs[0].size(0)
state = rnn.init_hidden(batch_size).cuda()
for s in range(len(inputs)):
input = inputs[s].cuda()
_, input = embedder(input)
output, state = rnn(input, state)
target = target.cuda()
loss = criterion(output,target)
running_loss += loss.item()*target.size(0)
fps, fns = errors(output.detach(), target.cpu())
running_fps += fps
running_fns += fns
running_loss = running_loss/len(loader.dataset)
running_fps = running_fps/(np.array(loader.dataset.targets)==0).sum()
running_fns = running_fns/(np.array(loader.dataset.targets)==1).sum()
print('Validating - Epoch: [{}/{}]\tLoss: {}\tFPR: {}\tFNR: {}'.format(epoch+1, args.nepochs, running_loss, running_fps, running_fns))
return running_loss, running_fps, running_fns
def errors(output, target):
_, pred = output.topk(1, 1, True, True)
pred = pred.squeeze().cpu().numpy()
real = target.numpy()
neq = pred!=real
fps = float(np.logical_and(pred==1,neq).sum())
fns = float(np.logical_and(pred==0,neq).sum())
return fps,fns
class ResNetEncoder(nn.Module):
def __init__(self, path):
super(ResNetEncoder, self).__init__()
temp = models.resnet34()
temp.fc = nn.Linear(temp.fc.in_features, 2)
ch = torch.load(path)
temp.load_state_dict(ch['state_dict'])
self.features = nn.Sequential(*list(temp.children())[:-1])
self.fc = temp.fc
def forward(self,x):
x = self.features(x)
x = x.view(x.size(0),-1)
return self.fc(x), x
class Attention(nn.Module):
"""
Attention Network.
"""
def __init__(self, encoder_dim, decoder_dim, attention_dim):
"""
:param encoder_dim: feature size of encoded images
:param decoder_dim: size of decoder's RNN
:param attention_dim: size of the attention network
"""
print('Emilie ', 'encoder_dim ',encoder_dim,
'decoder_dim ', decoder_dim,
'attention_dim ', attention_dim)
super(Attention, self).__init__()
self.encoder_att = nn.Linear(encoder_dim, attention_dim) # linear layer to transform encoded image
self.decoder_att = nn.Linear(decoder_dim, attention_dim) # linear layer to transform decoder's output
self.full_att = nn.Linear(attention_dim, 1) # linear layer to calculate values to be softmax-ed
self.relu = nn.ReLU()
self.softmax = nn.Softmax(dim=1) # softmax layer to calculate weights
def forward(self, encoder_out, decoder_hidden):
"""
Forward propagation.
:param encoder_out: encoded images, a tensor of dimension (batch_size, num_pixels, encoder_dim)
:param decoder_hidden: previous decoder output, a tensor of dimension (batch_size, decoder_dim)
:return: attention weighted encoding, weights
"""
att1 = self.encoder_att(encoder_out) # (batch_size, num_pixels, attention_dim)
att2 = self.decoder_att(decoder_hidden) # (batch_size, attention_dim)
att = self.full_att(self.relu(att1 + att2.unsqueeze(1))).squeeze(2) # (batch_size, num_pixels)
alpha = self.softmax(att) # (batch_size, num_pixels)
attention_weighted_encoding = (encoder_out * alpha.unsqueeze(2)).sum(dim=1) # (batch_size, encoder_dim)
return attention_weighted_encoding, alpha
# class rnn_single(nn.Module):
# def __init__(self, ndims):
# super(rnn_single, self).__init__()
# self.ndims = ndims
# self.fc1 = nn.Linear(512, ndims)
# self.fc2 = nn.Linear(ndims, ndims)
# self.fc3 = nn.Linear(ndims, 2)
# self.activation = nn.ReLU()
# def forward(self, input, state):
# input = self.fc1(input)
# state = self.fc2(state)
# state = self.activation(state+input)
# output = self.fc3(state)
# return output, state
# def init_hidden(self, batch_size):
# return torch.zeros(batch_size, self.ndims)
class rnn_single(nn.Module):
def __init__(self, ndims):
super(rnn_single, self).__init__()
self.ndims = ndims # 128
self.decoder_dims = 128
self.attention_dims = 512
self.attention = Attention(512, self.ndims, self.attention_dims)
self.fc1 = nn.Linear(512, ndims)
self.Testfc1 = nn.Linear(512, ndims)
self.fc2 = nn.Linear(ndims, ndims)
self.fc3 = nn.Linear(ndims, 2)
self.activation = nn.ReLU()
def forward(self, input, state):
attention_weighted_encoding, alpha = self.attention(input,
state)
input_weighted = torch.mul( input, attention_weighted_encoding)
test = self.Testfc1(input_weighted)
input = self.fc1(input_weighted)
state = self.fc2(state)
state = self.activation(state+input)
output = self.fc3(state)
return output, state
def init_hidden(self, batch_size):
self.h = torch.zeros(batch_size, self.ndims)
return torch.zeros(batch_size, self.ndims)
class rnndata(data.Dataset):
def __init__(self, libraryfile, s, transform=None, shuffle=None):
with open(libraryfile) as json_file:
lib = json.load(json_file)
slides = lib['Slides']
#
tiles_full = []
print(len(lib['Tiles']))
for i,g in enumerate(lib['Tiles']):
#print('g' , g)
tiles_full.extend(g)
print('Number of tiles: {}'.format(len(tiles_full)))
print('Length ', len(tiles_full))
self.slidenames = lib['Slides']
self.targets = lib['Targets']
self.tiles = lib['Tiles']
self.tiles_full = tiles_full
self.transform = transform
self.s = s
self.shuffle = shuffle
def __getitem__(self,index):
tiles_path= random.sample(self.tiles[index],len(self.tiles[index]))
out = []
for i in range(self.s):
#print('tiles_path[i] ', tiles_path[i])
img = cv2.imread(tiles_path[i])
#print('v \n')
img = cv2.resize(img, (224,224), interpolation = cv2.INTER_LINEAR )
if self.transform is not None:
img = self.transform(img)
out.append(img)
return out, self.targets[index]
def __len__(self):
return len(self.targets)
if __name__ == '__main__':
main()