-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_test_api.py
70 lines (55 loc) · 2.53 KB
/
train_test_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
from sklearn.ensemble import RandomForestClassifier
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, accuracy_score
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
from joblib import dump, load
from time import time
class Model(object):
def __init__(self, model_name='random_forest', mode=0):
self.model_name = model_name
self.model_file = "modelsv2/%s.joblib" % self.model_name
self.clf = None
if mode == 1:
self.clf = load(self.model_file)
def train(self, test_size=.2, train_file='train_data_latest.csv'):
# Read file
data = pd.read_csv(train_file)
# Split test-train
self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(
data.iloc[:, :-1], data.label, stratify=data.label, test_size=test_size, random_state=42)
if self.model_name == 'random_forest':
self.clf = RandomForestClassifier(
n_estimators=20, max_depth=6, random_state=0)
elif (self.model_name == 'knn'):
self.clf = KNeighborsClassifier()
else:
self.clf = SVC(kernel = 'poly',gamma=0.00001 )
self.clf.fit(self.X_train, self.y_train)
# Saves model to file
dump(self.clf, self.model_file)
def predict(self, test_instance):
features_reordered = np.array([test_instance[key]
for key in sorted(test_instance)])
return self.clf.predict(features_reordered.reshape(1, -1))
def evaluate(self, test_size=0.2, train_file='train_data_lastest.csv'):
# measure time for training
t0 = time()
self.train()
print('Test split: {0}', test_size)
print('Number of training samples {0} Number of test samples {1}'
.format(len(self.y_train), len(self.y_test)))
train_time = time() - t0
# measure time for predicting
t0 = time()
test_predict = self.clf.predict(self.X_test)
test_time = time() - t0
train_predict = self.clf.predict(self.X_train)
#calculate accuracies
accuracy_train = accuracy_score(self.y_train, train_predict)
accuracy_test = accuracy_score(self.y_test, test_predict)
print('Accuracy test: {0}'.format(accuracy_test))
return train_time, test_time, accuracy_train, accuracy_test, confusion_matrix(self.y_test, test_predict)