-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlastify_v6.py
2242 lines (1590 loc) · 74.5 KB
/
lastify_v6.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
"""
Created on Wed Apr 22 22:51:18 2015
This program
@author: erblast
To do:
Authorisated Requests
User interface
"""
#update version 4, this will be a complete overhaul using sqlite3
#for each API REST get method there will be one function which can handle:
#artist, track and album variants
#
#There will be one SQL function that handles data entry for one group of tables:
#all ID tables, all tag tables, all similar tables etc
#
#Dataframe functions should be as general as possible
import time
import threading
import pandas as pd
import sqlite3
import requests
from copy import deepcopy
from createDB import *
from call_controler_v2 import *
from output_controler import *
# Global Variables
url='http://ws.audioscrobbler.com/2.0/'
baserequest={'api_key':'43e826d47e1fc381ac3686f374ee34b5','format':'json'}
path=r'd:\Dropbox\work\python\lastify'
sk=str()
secret='e47ef29dda1b81c1f865d12a89ad28b8'
# Errors
class timeout(Exception):
pass
class json(Exception):
pass
#Functions Basic
def save(variable,filename):
import pickle
pickle.dump(variable, open(path +'\\' + filename + '.p','wb'))
print filename + ' pickled'
def load(filename):
import pickle
from os import path as pth
if pth.isfile(path +'\\' + filename + '.p'):
print filename + ' depickled'
return pickle.load(open(path +'\\' + filename + '.p','rb'))
def lookupkey(dictionary, key):
"""this recursive function finds a key in a nested dictionary and returns its
value"""
def function(dictionary, key):
if key in dictionary:
return dictionary[key]
else:
dictsindict=[item for item in dictionary.values() if type(item)==dict ]
for item in dictsindict:
return function(item, key)
try:
return function(dictionary, key)
except:
print key + ' not found in dictionary'
def find_dict(ls_item,IDname,ID,dict_items=[]):
'''
recursive function, will search nested list for dictionaries and ad an ID to
each dictionary. Format: {IDname:ID}
returns list of dicts or a single dict if original ls_item input is dict
dict_items will not change if function is called mutliple times and function
is not called as dict_items=[]
'''
# recursion stops if dict is found
if type(ls_item)==dict:
# ID is added here
if IDname in ls_item:
ls_item['%s 2' %IDname]=ID
else:
ls_item[IDname]=ID
return ls_item
# cycles through all items in iterable and applys recursion, passing IDname,ID, und
# dict_items collecting variable
if type(ls_item)==list or type(ls_item)==tuple or type(ls_item)==set:
for i in range(len(ls_item)+1):
if i<len(ls_item):
dict_items.append(find_dict(ls_item[i],IDname,ID,dict_items))
if i==len(ls_item):
return dict_items
#___________________________________________________________________________________
#Dataframe Functions
def json2df(json):
"""takes json dict and converts it to dataframes"""
attr=lookupkey(json, '@attr')
chart=()
if lookupkey(json,'topartists'):
chart=pd.DataFrame(lookupkey(json,'artist'))
attr['category']='artist'
attr['subcategory']='topartists'
if lookupkey(json,'toptracks'):
chart=pd.DataFrame(lookupkey(json,'track'))
attr['category']='track'
attr['subcategory']='toptracks'
if lookupkey(json,'topalbums'):
chart=pd.DataFrame(lookupkey(json,'album'))
attr['category']='album'
attr['subcategory']='topalbums'
if lookupkey(json,'toptags'):
chart=pd.DataFrame(lookupkey(json,'tag'))
attr['category']='tag'
if 'similar' in str(json.keys()):
attr['subcategory']='similar'
if lookupkey(json,'track'):
chart=pd.DataFrame(lookupkey(json,'track'))
attr['category']='track'
if lookupkey(json,'artist') and not lookupkey(json,'track') :
chart=pd.DataFrame(lookupkey(json,'artist'))
attr['category']='artist'
else:
attr['subcategory']=str()
return chart, attr
def unpackdf(df,ID_col, nested_col):
'''this function unpacks fields in a dataframe in which dictionaries are stored
in nested list structures. It searches all list nodes and returns all key value
pairs found in dicts as DataFrame
'''
#necessary because otherwise data in original dataframe will change
from copy import deepcopy
df=deepcopy(df)
import pandas as pd
dct=[]
for i,ID,item in df[[ID_col,nested_col]].itertuples():
# find_dict can return a single dict or a list of dicts, append needs to
# be used for single dicts and append for list of dicts
temp=find_dict(item,ID_col,ID,[])
if type(temp)==dict:
dct.append(temp)
else:
dct.extend(temp)
return pd.DataFrame(dct)
#____________________________________________________________________________________
#Request Functions
def get_userinfo(user='erblast'):
request=deepcopy(baserequest)
request['method']='user.gettoptracks'
request['user']=user
answer=requests.get(url, timeout=(50,10000),params=request)
return answer.json()
def get_chart(attr={'category':'artist'},period='overall', limit=1000, user='erblast'):
"""makes a REST API request requesting user charts
limit for track and album should not be higher than 3000
for artist the limit can be set to 4000
Returns JsonDict"""
request=deepcopy(baserequest)
if attr['category']=='artist':
request['method']='user.gettopartists'
if attr['category']=='track':
if limit==1000:
limit=5000
request['method']='user.gettoptracks'
if attr['category']=='album':
request['method']='user.gettopalbums'
request['period']=period
request['limit']=str(limit)
request['user']=user
import requests
try:
answer=requests.get(url, timeout=(50,10000),params=request)
chart,New_attr=json2df(answer.json())
return chart,New_attr
except:
raise timeout()
def get_token():
'''gets a token from the lastfm API'''
request=deepcopy(baserequest)
request['method']='auth.getToken'
answer=requests.get(url, timeout=(50,10000),params=request)
return answer.json()['token']
def authentication(token):
'''opens the lastfm webpage which requests the user to authenticate lastify'''
import webbrowser
webbrowser.open('http://www.last.fm/api/auth/?api_key=%s&token=%s'%(baserequest['api_key'],token))
def get_sk(token):
request=deepcopy(baserequest)
del request['format']
request['method']='auth.getSession'
request['token']=token
request['api_sig']=md5(request)
answer=requests.get(url, timeout=(50,10000),params=request)
return answer.text.split(r'<key>')[1].split(r'</key>')[0]
def md5(req):
req=pd.Series(req).sort_index()
import hashlib
m=hashlib.md5()
[m.update(('%s%s' %(i[0],i[1])).encode('utf-8')) for i in req.iteritems()]
m.update(secret.encode('utf-8'))
md5=m.hexdigest()
del m
return md5
def get_rec(sk,limit=1000):
request=deepcopy(baserequest)
request['method']='user.getRecommendedArtists'
request['limit']=str(limit)
del request['format']
request['sk']=sk
request['api_sig']=md5(request)
answer=requests.get(url, timeout=(50,10000),params=request)
return answer
def get_toptracks(artist,limit=100):
request=deepcopy(baserequest)
request['method']='artist.getTopTracks'
request['limit']=str(limit)
request['artist']=artist
try:
answer=requests.get(url, timeout=(50,10000),params=request)
except:
raise timeout()
return answer.json()
def get_topalbums(artist,limit=100):
request=deepcopy(baserequest)
request['method']='artist.getTopAlbums'
request['limit']=str(limit)
request['artist']=artist
try:
answer=requests.get(url, timeout=(50,10000),params=request)
except:
raise timeout()
return answer.json()
def get_similar( attr={'category':'track','artist':'James Blake','track':'limit to your love'},
limit=100):
request=deepcopy(baserequest)
request['method']='%s.getSimilar' % attr['category']
request['artist']=attr['artist']
request['limit']=limit
if attr['category']=='track':
request['track']=attr['track']
try:
answer=requests.get(url, timeout=(50,10000),params=request)
except:
raise timeout
chart,New_attr=json2df(answer.json())
return chart,New_attr
def get_toptags(attr={'category':'track','artist':'James Blake','track':'limit to your love'}):
request=deepcopy(baserequest)
request['method']='%s.getTopTags' % attr['category']
request['artist']=attr['artist']
if attr['category']=='track':
request['track']=attr['track']
if attr['category']=='album':
request['album']=attr['album']
try:
answer=requests.get(url, timeout=(50,10000),params=request)
except:
raise timeout
chart,New_attr=json2df(answer.json())
New_attr['subcategory']=attr['category']
return chart,New_attr
def get_info(attr={'category':'track','artist':'James Blake','track':'limit to your love'}):
request=deepcopy(baserequest)
request['method']='%s.getInfo' % attr['category']
request['artist']=attr['artist']
if attr['category']=='track':
request['track']=attr['track']
if attr['category']=='album':
request['album']=attr['album']
try:
answer=requests.get(url, timeout=(50,10000),params=request)
except:
raise timeout
chart=answer.json()
return chart,attr
def get_album_mbinfo(con,mbID,albumID,artistID):
'''makes REST request at musicbrainz API to get tracks on album and release date'''
url='http://musicbrainz.org/ws/2/release/%s?fmt=json&inc=recordings' % mbID
try:
answer=requests.get(url, timeout=(50,10000))
except:
raise timeout
try:
date=(str(lookupkey(answer.json(),'date')),int(albumID))
if date[0].lower()=='none':
print 'date not found'
except:
print 'date not found'
date='none'
try:
media=lookupkey(answer.json(),'media')
media=[lookupkey(cd,'tracks') for cd in media]
except:
print 'tracks not found'
print answer.text
return date,pd.DataFrame()
try:
tracks=[]
for cd in media:
tracks.extend(cd)
tracks=pd.DataFrame([lookupkey(track,'recording') for track in tracks])
tracks=tracks['title'].to_frame()
except:
print 'recording not found'
return date,pd.DataFrame()
tracks['artistID']=[artistID for i in range(len(tracks))]
tracks['albumID']=[albumID for i in range(len(tracks))]
tracks['trackID']=[lookup_trackID(con,title,int(ID)) for i,title,ID in
tracks.loc[:,['title','artistID']].itertuples()]
try:
# lookup track ID returns nan if no tack ID could be found, this is returned
# in the corresponding dataframe the field is a numpyfloat64 variable. Corresponding
# lines will not be returned
tracks=tracks[tracks['trackID']!='nan']
except:
pass
return date,tracks
def get_spotifyID(ID,attr={'category':'track','artist':'James Blake','track':'limit to your love'}):
url='https://api.spotify.com/v1/search'
params={'type':attr['category'],
'limit':'1'}
if attr['category']=='track':
params['q']='%s %s' % (attr['track'], attr['artist'])
if attr['category']=='album':
params['q']='%s %s' % (attr['album'], attr['artist'])
try:
answer=requests.get(url, timeout=(50,10000),params=params)
except:
print answer.text
raise timeout
try:
spotifyID=lookupkey(answer.json(),'items')[0]['id']
return (int(ID),spotifyID)
except:
return 'nan'
#_________________________________________________________________________________
# SQLite functions
def returnID(con,DF,attr={'category':'artist'}):
'''returns a List with IDs, category artist DF= name (can be Series), category track/album
DF=artistID, name'''
try:
DF=DF.to_frame()
except:
pass
if attr['category']=='artist':
return [lookup_artistID(con,name) for i,name in DF.itertuples()]
if attr['category']=='tag':
return [lookup_tagID(con,name) for i,name in DF.itertuples()]
if attr['category']=='track':
return [lookup_trackID(con,name,artistID) for i,artistID,name \
in DF.itertuples()]
if attr['category']=='album':
return [lookup_albumID(con,name,artistID) for i,artistID,name \
in DF.itertuples()]
def addIDcol(con,DF,attr):
'''adds ID of item described in attr to DF as columns
used if DF contains data related to single item described in attr'''
artist=attr['artist']
artistID=lookup_artistID(con,artist)
if attr['category']=='artist' or attr['subcategory']=='artist':
ID=artistID
if attr['category']=='track' or attr['subcategory']=='track':
track=attr['track']
ID=lookup_trackID(con,track,artistID)
if attr['category']=='album' or attr['subcategory']=='album':
album=attr['album']
ID=lookup_albumID(con,album,artistID)
DF['ID']=[ID for i in range(len(DF))]
return DF
def lookup_userID(con,user):
'''if user does not exist user will be assigned new ID'''
c=con.cursor()
c.execute('INSERT OR IGNORE INTO ID_user (userName) VALUES (?)',(user,))
con.commit()
c.execute('SELECT userID FROM ID_user WHERE userName=?',(user,))
return c.fetchone()[0]
def lookup_artistID(con,artist):
c=con.cursor()
c.execute('SELECT artistID FROM ID_artist WHERE artistName=?',(artist,))
return c.fetchone()[0]
def lookup_trackID(con,track,artistID):
c=con.cursor()
artistID=int(artistID)
try:
c.execute('SELECT trackID FROM ID_track WHERE trackName=? AND artistID=?',(track,artistID))
return int(c.fetchone()[0])
except TypeError:
try:
c.execute('SELECT trackID FROM ID_track WHERE trackName=? AND artistID=?',(track.lower(),artistID))
return int(c.fetchone()[0])
except TypeError:
try:
c.execute('SELECT trackID FROM ID_track WHERE trackName=? AND artistID=?',(track.title(),artistID))
return int(c.fetchone()[0])
except TypeError:
try:
c.execute('SELECT trackID FROM ID_track WHERE trackName=? AND artistID=?',(track.capitalize(),artistID))
return int(c.fetchone()[0])
except TypeError:
return 'nan'
def lookup_albumID(con,album,artistID):
c=con.cursor()
artistID=int(artistID)
try:
c.execute('SELECT albumID FROM ID_album WHERE albumName=? AND artistID=? ',(album,artistID))
return c.fetchone()[0]
except TypeError:
try:
c.execute('SELECT albumID FROM ID_album WHERE albumName=? AND artistID=? ',(album.lower(),artistID))
return c.fetchone()[0]
except TypeError:
return
def lookup_tagID(con,tag):
c=con.cursor()
c.execute('SELECT tagID FROM ID_tag WHERE tagName=?',(tag,))
return c.fetchone()[0]
def enter_IDitem(con,DF,attr={'category':'artist'}):
'''takes Dataframe containing
chart.loc[:,['name','mbid','url']] for category=artist
chart.loc[:,[artistID,'name','mbid','url']] for category track or album
chart.loc[:,[name,url]] for tags
'''
c=con.cursor()
if attr['category']=='artist':
newTuple=((name,mbID,url) for i,name,mbID,url in
DF.itertuples()
)
c.executemany('INSERT OR IGNORE INTO ID_artist (artistName,mbID,url) \
VALUES (?,?,?)',newTuple)
if attr['category']=='track':
newTuple=((int(artistID),name.lower(),mbID,url) for i,artistID,name,mbID,url in
DF.itertuples()
)
c.executemany('INSERT OR IGNORE INTO ID_track (artistID,trackName,mbID,url) \
VALUES (?,?,?,?)',newTuple)
if attr['category']=='album':
newTuple=((int(artistID),name.lower(),mbID,url) for i,artistID,name,mbID,url in
DF.itertuples()
)
c.executemany('INSERT OR IGNORE INTO ID_album (artistID,albumName,mbID,url) \
VALUES (?,?,?,?)',newTuple)
if attr['category']=='tag':
newTuple=((name,url) for i,name,url in
DF.itertuples()
)
c.executemany('INSERT OR IGNORE INTO ID_tag (tagName,url) \
VALUES (?,?)',newTuple)
con.commit()
def enter_Images(con,imageDF,attr={'category':'artist'}):
'''takes image Dataframe [:,['ID','image','size']]
should be called by enter_chart'''
c=con.cursor()
newTuple=((int(ID),image,size) for i,image,ID,size in imageDF.itertuples())
if attr['category']=='artist' or attr['category']=='track':
c.executemany('INSERT OR IGNORE INTO image_artist (artistID, image, size) \
VALUES (?,?,?)',newTuple)
if attr['category']=='album' :
c.executemany('INSERT OR IGNORE INTO image_album (albumID, image, size) \
VALUES (?,?,?)',newTuple)
con.commit()
def enter_tags(con,tagDF,attr={'category':'tag','subcategory':'artist','artist':'James Blake'}):
'''tagDF.loc[:,['ID','tag','count']]'''
c=con.cursor()
newTuple=( ( int(ID),int(lookup_tagID(con,tag)),int(count) ) for
i,ID,tag,count in
tagDF.loc[:,['ID','name','count']].itertuples()
)
if attr['subcategory']=='artist':
c.executemany('INSERT OR IGNORE INTO tag_artist (artistID, tagID, count) \
VALUES (?,?,?)',newTuple)
if attr['subcategory']=='track':
c.executemany('INSERT OR IGNORE INTO tag_track (trackID, tagID, count) \
VALUES (?,?,?)',newTuple)
if attr['subcategory']=='album':
c.executemany('INSERT OR IGNORE INTO tag_album (albumID, tagID, count) \
VALUES (?,?,?)',newTuple)
con.commit()
def enter_similar(con,simDF,attr={'category':'track','subcategory':'similar','artist':'James Blake','track':'limit to your love'}):
'''artistID or trackID must be part of input DF '''
c=con.cursor()
if attr['category']=='artist':
newTuple=( (int(ID),int(artistID),float(match)) \
for i,artistID,ID,match in \
simDF.loc[:,['artistID','ID','match']].itertuples() \
)
c.executemany('INSERT OR IGNORE INTO similar_artist (artistID_1, artistID_2, score) \
VALUES (?,?,?)',newTuple)
if attr['category']=='track':
newTuple=( (int(trackID),int(ID),float(match)) \
for i,trackID,ID,match in \
simDF.loc[:,['trackID','ID','match']].itertuples() \
)
c.executemany('INSERT OR IGNORE INTO similar_track (trackID_1, trackID_2, score) \
VALUES (?,?,?)',newTuple)
con.commit()
def enter_userplays(con,playDF,user='erblast',attr={'category':'artist'}):
'''enters user plays into appropriate database takes DF['xID','playcount']
should be called by enter_chart'''
c=con.cursor()
userID=lookup_userID(con,user)
newTuple=((int(userID),int(ID),int(plays)) for i,ID,plays
in playDF.itertuples()
)
if attr['category']=='artist':
c.executemany('INSERT OR REPLACE INTO plays_artist (userID, artistID , plays) \
VALUES (?,?,?)',newTuple)
if attr['category']=='track':
c.executemany('INSERT OR REPLACE INTO plays_track (userID, trackID , plays) \
VALUES (?,?,?)',newTuple)
if attr['category']=='album':
c.executemany('INSERT OR REPLACE INTO plays_album (userID, albumID , plays) \
VALUES (?,?,?)',newTuple)
con.commit()
def enter_chart(con,chart,attr={'category':'artist'}):
"""this function takes a json derived chartfile and artist toptrack and topalbum files
and enters all the information into the appropriate db charts"""
if 'user' in attr:
user=attr['user']
else:
user='total'
if attr['category']=='artist':
enter_IDitem(con,chart.loc[:,['name','mbid','url']],attr)
chart['artistID']=returnID(con,chart['name'])
imagedf=unpackdf(chart,'artistID','image')
enter_Images(con,imagedf)
if attr['subcategory']!='similar':
enter_userplays(con,chart.loc[:,['artistID','playcount']],user,attr)
if attr['category']=='track' or attr['category']=='album':
artistdf=unpackdf(chart,'name','artist')
if attr['subcategory']!='toptracks' and attr['subcategory']!='topalbums':
enter_IDitem(con,artistdf.loc[:,['name','mbid','url']],{'category':'artist'})
if len(artistdf.columns)==4:
artistdf.columns=['mbid artist','name artist','name track','url artist']
if len(artistdf.columns)==3:
artistdf.columns=['name artist','name track','url artist']
chart['artistID']=returnID(con,artistdf['name artist'])
enter_IDitem(con,chart.loc[:,['artistID','name','mbid','url']], attr)
chart['ID']=returnID(con,chart.loc[:,['artistID','name']],attr)
if attr['category']=='album':
imagedf=unpackdf(chart,'ID','image')
if attr['category']=='track':
imagedf=unpackdf(chart,'artistID','image')
if attr['subcategory']!='toptracks':
enter_Images(con,imagedf,attr)
enter_userplays(con,chart.loc[:,['ID','playcount']],user,attr)
def enter_mbinfo_album(con,date,tracks):
'''saves mbinfo_album to database'''
c=con.cursor()
if len(date)>1:
c.executemany('INSERT OR IGNORE INTO date_album (date,albumID) VALUES (?,?)',date)
if len(date)==1:
c.execute('INSERT OR IGNORE INTO date_album (date,albumID) VALUES (?,?)',date[0])
try:
newTuple=((int(trackID),int(albumID)) for i,trackID,albumID in tracks.loc[:,['trackID','albumID']].itertuples() )
c.executemany('INSERT OR IGNORE INTO track_rel_album (trackID,albumID) VALUES (?,?)',newTuple)
except:
try:
newTuple=((int(trackID),int(albumID)) for i,trackID,albumID in tracks.loc[:,['trackID','albumID']].itertuples() )
c.execute('INSERT OR IGNORE INTO track_rel_album (trackID,albumID) VALUES (?,?)',newTuple)
except:
pass
con.commit()
def enter_spotifyID(con,tup,attr):
'''saves spotifyID to database'''
c=con.cursor()
if attr['category']=='track' and len(tup)>1:
c.executemany('INSERT OR IGNORE INTO spotifyID_track (trackID,spotifyID) VALUES (?,?)',tup)
if attr['category']=='track' and len(tup)==1:
c.execute('INSERT OR IGNORE INTO spotifyID_track (trackID,spotifyID) VALUES (?,?)',tup)
if attr['category']=='album' and len(tup)>1:
c.executemany('INSERT OR IGNORE INTO spotifyID_album (albumID,spotifyID) VALUES (?,?)',tup)
if attr['category']=='album' and len(tup)==1:
c.execute('INSERT OR IGNORE INTO spotifyID_album (albumID,spotifyID) VALUES (?,?)',tup)
#Load functions
def load_toptracks(db_path, lock, call_controler, out, limit=100, n_entries=20000):
"""
goes through artists and loads toptracks loading progress is displayed and
saved in loaded_toptracks.
SQL is faster when many inserts are made at once, enter_chart will be used
to enter data as soon as at least n_entries are collected.
The enterchart function is used to save data.
Timeout errors will result in artist not being entered in loaded_toptracks, while
key errors which spring from insufficient data in the json response will enter
artist in loaded thus permanently skipping it.
Toptracks will be reloaded if the function is being called with a higher limit
than in previous runs
"""
con=sqlite3.connect(db_path)
c=con.cursor()
log=call_controler.create_log()
lock.acquire()
loaded=pd.read_sql('SELECT artistID FROM loaded_toptracks WHERE lim>=?', con, params=(limit,) )
loaded=set(loaded['artistID'].tolist())
insuflim=pd.read_sql('SELECT artistID FROM loaded_toptracks WHERE lim<?', con, params=(limit,) )
insuflim=set(insuflim['artistID'].tolist())
artists=pd.read_sql('SELECT artistID,artistName FROM ID_artist',con)
lock.release()
for i,ID,name in artists.itertuples():
if i==0:
save_loaded_update=list()
save_loaded_insert=list()
reset_chart_save=True
chart_save=pd.DataFrame()
if ID not in loaded:
call_controler.timer_event.wait()
try:
toptracks,attr=json2df(get_toptracks(name,limit=limit))
log.log_event()
if toptracks.shape[0]>1: #accounts for empty table
if reset_chart_save==True:
chart_save=toptracks
reset_chart_save=False
else:
chart_save=chart_save.append(toptracks)
except timeout:
continue
except:
pass
if ID in insuflim:
save_loaded_update.append((limit,int(ID)))
else:
save_loaded_insert.append((int(ID),limit))
if chart_save.shape[0]>=n_entries or (i==len(artists)-1 and chart_save.shape[0]>0):
lock.acquire()
try:
out.save( 'TOPTRACKS is saving to database')
enter_chart(con,chart_save,attr)
reset_chart_save=True
if save_loaded_update:
c.executemany('UPDATE loaded_toptracks SET lim=? WHERE artistID=?',save_loaded_update)
save_loaded_update=list()
if save_loaded_insert:
c.executemany('INSERT OR IGNORE INTO loaded_toptracks (artistID,lim) VALUES(?,?)',save_loaded_insert)
save_loaded_insert=list()
con.commit()
except Exception as e:
save(chart_save,'toptrack_error_chart')
save(attr,'toptrack_error_attr')
out.save(e)
lock.release()
raise json
lock.release()
out.save( 'TOPTRACKS \t\t%.3f\t percent loaded' % (float(i+1)/len(artists)*100))
def load_topalbums(db_path, lock, call_controler, out,limit=100,n_entries=20000):
"""see load_toptracks for description"""
con=sqlite3.connect(db_path)
c=con.cursor()
log=call_controler.create_log()
lock.acquire()
loaded=pd.read_sql('SELECT artistID FROM loaded_topalbums WHERE lim>=?', con, params=(limit,) )
loaded=set(loaded['artistID'].tolist())
insuflim=pd.read_sql('SELECT artistID FROM loaded_topalbums WHERE lim<?', con, params=(limit,) )
insuflim=set(insuflim['artistID'].tolist())
artists=pd.read_sql('SELECT artistID,artistName FROM ID_artist',con)
lock.release()
for i,ID,name in artists.itertuples():
if i==0:
save_loaded_update=list()
save_loaded_insert=list()
reset_chart_save=True
chart_save=pd.DataFrame()
if ID not in loaded:
call_controler.timer_event.wait()
try:
topalbums,attr=json2df(get_topalbums(name,limit=limit))
log.log_event()
if topalbums.shape[0]>1: #accounts for empty table
if reset_chart_save==True:
chart_save=topalbums
reset_chart_save=False
else:
chart_save=chart_save.append(topalbums)
except timeout:
continue
except:
pass
if ID in insuflim:
save_loaded_update.append((limit,int(ID)))
else:
save_loaded_insert.append((int(ID),limit))
if chart_save.shape[0]>=n_entries or (i==len(artists)-1 and chart_save.shape[0]>0):
lock.acquire()
try:
out.save( 'TOPALBUMS is saving to database')
enter_chart(con,chart_save,attr)
reset_chart_save=True
if save_loaded_update:
c.executemany('UPDATE loaded_topalbums SET lim=? WHERE artistID=?',save_loaded_update)
save_loaded_update=list()
if save_loaded_insert:
c.executemany('INSERT OR IGNORE INTO loaded_topalbums (artistID,lim) VALUES(?,?)',save_loaded_insert)
save_loaded_insert=list()
con.commit()
except Exception as e:
save(chart_save,'topalbum_error_chart')
save(attr,'topalbum_error_attr')
out.save(e)