-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathbs_ergb_to_npy.py
135 lines (120 loc) · 5.67 KB
/
bs_ergb_to_npy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import argparse
import os
import cv2
import numpy as np
import glob
import shutil
FRAME_WIDTH = 970
FRAME_HEIGHT = 625
def convert_and_fix_event_pixels(data, upper_limit, fix_overflows=True):
data = data.astype(np.int32)
overflow_indices = np.where(data > upper_limit*32)
num_overflows = overflow_indices[0].shape[0]
if fix_overflows and num_overflows > 0:
data[overflow_indices] = data[overflow_indices] - 65536
data = data / 32.0
data = np.rint(data)
data = data.astype(np.int16)
data = np.clip(data, 0, upper_limit)
return data
def bs_ergb_to_memmap(input_path, output_path):
events_ts_path = os.path.join(output_path, 'events_ts.npy')
events_xy_path = os.path.join(output_path, 'events_xy.npy')
events_p_path = os.path.join(output_path, 'events_p.npy')
images_path = os.path.join(output_path, 'images.npy')
images_ts_path = os.path.join(output_path, 'images_ts.npy')
image_event_indices_path = os.path.join(output_path, 'image_event_indices.npy')
images_folder = os.path.join(input_path, 'images')
events_folder = os.path.join(input_path, 'events')
image_files_glob_pattern = os.path.join(images_folder, "*.png")
event_files_glob_pattern = os.path.join(events_folder, "*.npz")
image_timestamps_file_path = os.path.join(images_folder, "timestamp.txt")
image_file_paths = sorted(glob.glob(image_files_glob_pattern))
event_file_paths = sorted(glob.glob(event_files_glob_pattern))
len_images = len(image_file_paths)
assert len_images == len(event_file_paths) + 1
os.makedirs(output_path)
start_timestamp_s = 0.0
# Save images_ts
image_ts_list = []
with open(image_timestamps_file_path) as f:
file_lines = f.readlines()
start_timestamp_s = float(file_lines[0]) / 1000000.0
for line in file_lines:
frame_ts_s = float(line) / 1000000.0
image_ts_normalized = np.array(frame_ts_s - start_timestamp_s)
image_ts_normalized = np.expand_dims(image_ts_normalized, axis=-1)
image_ts_normalized = np.expand_dims(image_ts_normalized, axis=0)
image_ts_list.append(image_ts_normalized)
images_ts_data = np.concatenate(image_ts_list)
np.save(images_ts_path, images_ts_data, allow_pickle=False, fix_imports=False)
del images_ts_data
del image_ts_list
# Save image_event_indices
first_idx = np.zeros((1, 1), dtype=np.int64)
image_event_indices = [first_idx]
total_event_num = 0
for event_file_path in event_file_paths:
event_file_data = np.load(event_file_path)
event_num = event_file_data['x'].shape[0]
total_event_num = total_event_num + event_num
event_idx = np.array(total_event_num)
event_idx = np.expand_dims(event_idx, axis=-1)
event_idx = np.expand_dims(event_idx, axis=0)
image_event_indices.append(event_idx)
image_event_indices = np.concatenate(image_event_indices)
np.save(image_event_indices_path, image_event_indices, allow_pickle=False, fix_imports=False)
# Save events
x_data = np.zeros(shape=total_event_num, dtype=np.uint16)
y_data = np.zeros(shape=total_event_num, dtype=np.uint16)
t_data = np.zeros(shape=total_event_num, dtype=np.uint32)
p_data = np.zeros(shape=total_event_num, dtype=np.uint8)
for frame_idx, event_file_path in enumerate(event_file_paths):
start_event_idx = image_event_indices[frame_idx].item()
end_event_idx = image_event_indices[frame_idx+1].item()
event_file_data = np.load(event_file_path)
x_data[start_event_idx:end_event_idx] = convert_and_fix_event_pixels(event_file_data['x'], FRAME_WIDTH - 1)
y_data[start_event_idx:end_event_idx] = convert_and_fix_event_pixels(event_file_data['y'], FRAME_HEIGHT - 1)
t_data[start_event_idx:end_event_idx] = event_file_data['timestamp']
p_data[start_event_idx:end_event_idx] = event_file_data['polarity']
xy_data = np.stack([x_data, y_data], axis=-1)
t_data = t_data.astype(np.float64)
t_data = t_data / 1000000.0 # convert us to s
t_data = t_data - start_timestamp_s # zeroize timestamps
np.save(events_ts_path, t_data, allow_pickle=False, fix_imports=False)
np.save(events_xy_path, xy_data, allow_pickle=False, fix_imports=False)
np.save(events_p_path, p_data, allow_pickle=False, fix_imports=False)
del x_data
del y_data
del t_data
del p_data
# Save images
images_list = []
for image_file_path in image_file_paths:
img = cv2.imread(image_file_path, cv2.IMREAD_GRAYSCALE)
img = np.expand_dims(img, axis=-1)
img = np.expand_dims(img, axis=0)
images_list.append(img)
images_data = np.concatenate(images_list)
np.save(images_path, images_data, allow_pickle=False, fix_imports=False)
if __name__ == "__main__":
"""
Tool to convert BS_ERGB dataset files to the memmap format
"""
parser = argparse.ArgumentParser()
parser.add_argument("path", help="path to sequence folder with subfolders for events and images")
parser.add_argument("--output_dir", help="Path to extract", required=True)
parser.add_argument("--overwrite", help="Overwrite existing folders", action='store_true')
args = parser.parse_args()
if not os.path.isdir(args.output_dir):
print("Output directory must be a directory")
exit()
seq_name = os.path.basename(os.path.normpath(args.path))
output_path = os.path.join(args.output_dir, seq_name)
if os.path.exists(output_path):
if not args.overwrite:
print("Output directory {} already exists, exiting".format(output_path))
exit()
else:
shutil.rmtree(output_path)
bs_ergb_to_memmap(args.path, output_path)