-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtestLanes_examineAndDecide.py
171 lines (150 loc) · 8.32 KB
/
testLanes_examineAndDecide.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import pandas as pd
import numpy as np
import sys
import os.path
import time
tic = time.clock()
tic2=tic
# import pdb
# Earth Geometry Parameters
hL = 6.13/3.0; # Point heading threshold [m]; above this, measurement is rejected
dL = 20; # Point separation [m]; above this, points are not "neighbors"
aF = 4; # GPS accuracy threshold [m]; above this, measurement is rejected
maxSegLen = 160.934
# Search threshold to minimize operations
latiF = 0.0005; # Latitude delta ~50 meters
lngiF = 0.0005; # Longitude delta ~50 meters
r = 6378137;
# For resuming
lenLastId = 0
fname = "/home/emeadows/telemetry/lastClusterId_testLanes_examineAndDecide.txt"
if os.path.isfile(fname):
f = open(fname,'r')
lenLastId = int(f.readline())
f.close()
# Data input and output files
lanesFile = ("/home/emeadows/telemetry/testLanes.csv")
lanesOutFile = ("/home/emeadows/telemetry/testLanes_v3.csv")
print "loaded"
# If restart is desired, enable
# lenLastId = 0
if lenLastId == 0:
lane_data = pd.read_csv("C:/Users/emeadows/Documents/ADAS/telemetryProject/ContinualProcessing/ElCamino_ChateauDrive_HillsdaleBlvd.csv")
lane_data['lane_info'] = lane_data['lane_info'].astype('str')
lane_data = lane_data[lane_data['lane_info'].str.len() == 9]
lane_data = lane_data[(lane_data['gps_accuracy'] <= aF)]
lane_data.reset_index(inplace=True)
# Conversion from string-stored values to integers
lane_data['RoadClass'] = lane_data['lane_info'].str[0].astype('int')
lane_data['LLaneType'] = lane_data['lane_info'].str[1].astype('int')
lane_data['LLaneQual'] = lane_data['lane_info'].str[2].astype('int')
lane_data['LLaneColo'] = lane_data['lane_info'].str[3].astype('int')
lane_data['LLaneCros'] = lane_data['lane_info'].str[4].astype('int')
lane_data['RLaneType'] = lane_data['lane_info'].str[5].astype('int')
lane_data['RLaneQual'] = lane_data['lane_info'].str[6].astype('int')
lane_data['RLaneColo'] = lane_data['lane_info'].str[7].astype('int')
lane_data['RLaneCros'] = lane_data['lane_info'].str[8].astype('int')
lane_data.drop('lane_info', axis=1, inplace=True)
lane_data['clusterId'] = lane_data.index
else:
lane_data = pd.read_csv(lanesFile)
evaluatedSet = []
toEvaluateSet = []
prioritySet = pd.DataFrame()
cdx = 0
maxSize = len(lane_data)
lastHundred = 0
print "examining"
# try:
for item, noo in lane_data[lenLastId::].iterrows():
tempEvaluatedSet = []
if item in evaluatedSet:
continue
toEvaluateSet.append(item)
if lane_data['gps_accuracy'].iloc[item] > aF:
lane_data.iloc[item,('clusterId')] = 0
evaluatedSet += [item]
continue
while True:
skipSet = pd.DataFrame()
cdx += 1
# used for Max distance = 0.1 mile
minLat = noo['latitude']
minLong = noo['longitude']
maxLat = noo['latitude']
maxLong = noo['longitude']
# return to normal
while True:
if len(toEvaluateSet) == 0:
divVal = floor(len(tempEvaluatedSet)/100)
if divVal > lastHundred:
lastHundred = divVal
lane_data.to_csv("/home/emeadows/Data/newLaneData.csv")
dex = toEvaluateSet.pop(0)
irow = lane_data.loc[dex]
evaluatedSet += [dex]
tempEvaluatedSet += [dex]
# GPS within searchable region via simple boolean
latiVal = (lane_data['latitude'] - irow['latitude']) < latiF
lngiVal = (lane_data['longitude'] - irow['longitude']) < lngiF
headVal = ((lane_data['heading'] - irow['heading']) > (360 - hL)) | ((lane_data['heading'] - irow['heading']) < (0 + hL))
# Join all conditions and make sure points have not been currently skipped, or evaluated
sublist = set(lane_data[(latiVal & lngiVal & headVal)].index.tolist()) - set(skipSet.index.tolist()) - set(toEvaluateSet) - set(evaluatedSet)
currentPoints = lane_data.loc[sublist]
# Calculate distance from current evaluation point
latiDelta = np.radians((currentPoints['latitude'] - irow['latitude'])/2)
longDelta = np.radians((currentPoints['longitude'] - irow['longitude'])/2)
distDelta = 2 * r * np.arcsin( np.sqrt( np.square(np.sin(latiDelta)) + np.multiply( np.multiply( np.cos(currentPoints['latitude']), np.cos(irow['latitude']) ), np.square( np.sin( longDelta ))) ))
# Determine if distance to polygon extrema for current segment exceeds 0.1 mile
latiDelta = np.radians((currentPoints['latitude'] - minLat)/2)
longDelta = np.radians((currentPoints['longitude'] - minLong)/2)
distMin = 2 * r * np.arcsin( np.sqrt( np.square(np.sin(latiDelta)) + np.multiply( np.multiply( np.cos(currentPoints['latitude']), np.cos(irow['latitude']) ), np.square( np.sin( longDelta ))) ))
latiDelta = np.radians((currentPoints['latitude'] - maxLat)/2)
longDelta = np.radians((currentPoints['longitude'] - maxLong)/2)
distMax = 2 * r * np.arcsin( np.sqrt( np.square(np.sin(latiDelta)) + np.multiply( np.multiply( np.cos(currentPoints['latitude']), np.cos(irow['latitude']) ), np.square( np.sin( longDelta ))) ))
inSegment = (distDelta < dL) & (distMin < maxSegLen) & (distMax < maxSegLen)
# Removal of points that are now inside the segment
if len(prioritySet) > 0:
prioritySet = prioritySet[(set(prioritySet.index) - set(distDelta[inSegment].index))]
outSegment = (distDelta < dL) & ((distMin > maxSegLen) | (distMax > maxSegLen))
if outSegment.sum() > 0
maxDist = pd.concat([distMin[outSegment],distMax[outSegment]],axis=1).max(axis=1)
if len(prioritySet.index) == 0:
prioritySet = maxDist
else:
prioritySet = prioritySet.append(maxDist[set(maxDist.index) - set(prioritySet.index)])
if len(skipSet.index) == 0:
skipSet = maxDist
else:
skipSet = skipSet.append(maxDist[set(maxDist.index) - set(skipSet.index)])
# Update to segment extrema
minLat = min(minLat,lane_data.loc[distDelta[inSegment].index,('latitude')].min())
minLong = min(minLong,lane_data.loc[distDelta[inSegment].index,('longitude')].min())
maxLat = max(maxLat,lane_data.loc[distDelta[inSegment].index,('latitude')].max())
maxLong = max(maxLong,lane_data.loc[distDelta[inSegment].index,('longitude')].max())
toEvaluateSet += [i for i in (set(distDelta[inSegment].index) - set(toEvaluateSet) - set(evaluatedSet))]
if len(distDelta[(distDelta < dL)].index) != 0:
lane_data.loc[distDelta[inSegment].index,('clusterId')] = cdx
sys.stdout.write("\r{0} / {1} / {2}: cdx - {3}, {4} of {5} items;\t{6}\t{7}\t{8}\t{9}".format( len(evaluatedSet),
(lane_data['clusterId'] == cdx).sum(),
len(lane_data),
cdx,
len(toEvaluateSet),
inSegment.sum(),
minLat,
minLong,
maxLat,
maxLong))
sys.stdout.flush()
indexRow = item
break
if len(prioritySet) == 0:
break
else:
prioritySet.sort()
noo = lane_data[prioritySet.pop(prioritySet.index[0])]
toc = time.clock()
print "\n{0}".format(toc-tic2)
tic2 = time.clock()
toc = time.clock()
print "\n{0}".format(toc-tic)