-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagrif_lim2_interp.F90
662 lines (612 loc) · 23.6 KB
/
agrif_lim2_interp.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
MODULE agrif_lim2_interp
!!======================================================================
!! *** MODULE agrif_lim2_update ***
!! Nesting module : update surface ocean boundary condition over ice
!! from a child grif
!! Sea-Ice model : LIM 2.0 Sea ice model time-stepping
!!======================================================================
!! History : 2.0 ! 04-2008 (F. Dupont) initial version
!! 3.4 ! 09-2012 (R. Benshila, C. Herbaut) update and EVP
!!----------------------------------------------------------------------
#if defined key_agrif && defined key_lim2
!!----------------------------------------------------------------------
!! 'key_lim2' : LIM 2.0 sea-ice model
!! 'key_agrif' : AGRIF library
!!----------------------------------------------------------------------
!! agrif_interp_lim2 : update sea-ice model on boundaries or total
!! sea-ice area
!! agrif_rhg_lim2_load : interpolcation of ice velocities using Agrif
!! agrif_rhg_lim2 : sub-interpolation of ice velocities for both
!! splitting time and sea-ice time step
!! agrif_interp_u_ice : atomic routine to interpolate u_ice
!! agrif_interp_u_ice : atomic routine to interpolate v_ice
!! agrif_trp_lim2_load : interpolcation of ice properties using Agrif
!! agrif_trp_lim2 : sub-interpolation of ice properties for
!! sea-ice time step
!! agrif_interp_u_ice : atomic routine to interpolate ice properties
!!----------------------------------------------------------------------
USE par_oce
USE dom_oce
USE sbc_oce
USE ice_2
USE dom_ice_2
USE agrif_ice
IMPLICIT NONE
PRIVATE
PUBLIC agrif_rhg_lim2_load, agrif_rhg_lim2
PUBLIC agrif_trp_lim2_load, agrif_trp_lim2
PUBLIC interp_u_ice, interp_v_ice
PUBLIC interp_adv_ice
REAL(wp), DIMENSION(:,:) , ALLOCATABLE, PRIVATE :: uice_agr, vice_agr
REAL(wp), DIMENSION(:,:,:), ALLOCATABLE, PRIVATE :: tabice_agr
!!----------------------------------------------------------------------
!! NEMO/NST 3.4 , NEMO Consortium (2012)
!! $Id: agrif_lim2_interp.F90 6794 2016-07-06 13:10:40Z jchanut $
!! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt)
!!----------------------------------------------------------------------
CONTAINS
# if defined key_lim2_vp
SUBROUTINE agrif_rhg_lim2_load
!!-----------------------------------------------------------------------
!! *** ROUTINE agrif_rhg_lim2_load ***
!!
!! ** Method : need a special routine for dealing with exchanging data
!! between the child and parent grid during ice step
!!
!!-----------------------------------------------------------------------
!
IF (Agrif_Root()) RETURN
Agrif_SpecialValue=0.
Agrif_UseSpecialValue = .FALSE.
u_ice_nst(:,:) = 0.
v_ice_nst(:,:) = 0.
CALL Agrif_Bc_variable( u_ice_id ,procname=interp_u_ice, calledweight=1. )
CALL Agrif_Bc_variable( v_ice_id ,procname=interp_v_ice, calledweight=1. )
Agrif_SpecialValue=0.
Agrif_UseSpecialValue = .FALSE.
!
END SUBROUTINE agrif_rhg_lim2_load
SUBROUTINE agrif_rhg_lim2(pu_n,pv_n)
!!-----------------------------------------------------------------------
!! *** ROUTINE agrif_rhg_lim2 ***
!!
!! ** Method : we feel the boundaries with values stored above
!!-----------------------------------------------------------------------
REAL(wp), DIMENSION(jpi,0:jpj+1), INTENT(inout) :: pu_n, pv_n
!!
REAL(wp) :: zrhox, zrhoy
INTEGER :: ji,jj
!!-----------------------------------------------------------------------
!
IF (Agrif_Root()) RETURN
zrhox = Agrif_Rhox()
zrhoy = Agrif_Rhoy()
IF((nbondi == -1).OR.(nbondi == 2)) THEN
DO jj=2,jpj
pu_n(3,jj) = u_ice_nst(3,jj)/(zrhoy*e2f(2,jj-1))*tmu(3,jj)
END DO
DO jj=2,jpj
pv_n(3,jj) = v_ice_nst(3,jj)/(zrhox*e1f(2,jj-1))*tmu(3,jj)
END DO
ENDIF
IF((nbondi == 1).OR.(nbondi == 2)) THEN
DO jj=2,jpj
pu_n(nlci-1,jj) = u_ice_nst(nlci-1,jj)/(zrhoy*e2f(nlci-2,jj-1))*tmu(nlci-1,jj)
END DO
DO jj=2,jpj
pv_n(nlci-1,jj) = v_ice_nst(nlci-1,jj)/(zrhox*e1f(nlci-2,jj-1))*tmu(nlci-1,jj)
END DO
ENDIF
IF((nbondj == -1).OR.(nbondj == 2)) THEN
DO ji=2,jpi
pv_n(ji,3) = v_ice_nst(ji,3)/(zrhox*e1f(ji-1,2))*tmu(ji,3)
END DO
DO ji=2,jpi
pu_n(ji,3) = u_ice_nst(ji,3)/(zrhoy*e2f(ji-1,2))*tmu(ji,3)
END DO
ENDIF
IF((nbondj == 1).OR.(nbondj == 2)) THEN
DO ji=2,jpi
pv_n(ji,nlcj-1) = v_ice_nst(ji,nlcj-1)/(zrhox*e1f(ji-1,nlcj-2))*tmu(ji,nlcj-1)
END DO
DO ji=2,jpi
pu_n(ji,nlcj-1) = u_ice_nst(ji,nlcj-1)/(zrhoy*e2f(ji-1,nlcj-2))*tmu(ji,nlcj-1)
END DO
ENDIF
!
END SUBROUTINE agrif_rhg_lim2
#else
SUBROUTINE agrif_rhg_lim2_load
!!-----------------------------------------------------------------------
!! *** ROUTINE agrif_rhg_lim2_load ***
!!
!! ** Method : need a special routine for dealing with exchanging data
!! between the child and parent grid during ice step
!! we interpolate and store the boundary if needed, ie if
!! we are in inside a new parent ice time step
!!-----------------------------------------------------------------------
INTEGER :: ji,jj
REAL(wp) :: zrhox, zrhoy
!!-----------------------------------------------------------------------
!
IF (Agrif_Root()) RETURN
IF( lim_nbstep == 1. ) THEN
!
! switch old values by hand
u_ice_oe(:,:,1) = u_ice_oe(:,:,2)
v_ice_oe(:,:,1) = v_ice_oe(:,:,2)
u_ice_sn(:,:,1) = u_ice_sn(:,:,2)
v_ice_sn(:,:,1) = v_ice_sn(:,:,2)
! interpolation of boundaries (called weight prevents AGRIF interpolation)
Agrif_SpecialValue=-9999.
Agrif_UseSpecialValue = .TRUE.
IF( .NOT. ALLOCATED(uice_agr) )THEN
ALLOCATE(uice_agr(jpi,jpj), vice_agr(jpi,jpj))
ENDIF
uice_agr = 0.
vice_agr = 0.
CALL Agrif_Bc_variable(u_ice_id,procname=interp_u_ice, calledweight=1.)
CALL Agrif_Bc_variable(v_ice_id,procname=interp_v_ice, calledweight=1.)
Agrif_SpecialValue=0.
Agrif_UseSpecialValue = .FALSE.
!
zrhox = agrif_rhox() ; zrhoy = agrif_rhoy()
uice_agr(:,:) = uice_agr(:,:)/(zrhoy*e2u(:,:))*umask(:,:,1)
vice_agr(:,:) = vice_agr(:,:)/(zrhox*e1v(:,:))*vmask(:,:,1)
! fill boundaries
DO jj = 1, jpj
DO ji = 1, 2
u_ice_oe(ji, jj,2) = uice_agr(ji ,jj)
u_ice_oe(ji+2,jj,2) = uice_agr(nlci+ji-3,jj)
END DO
END DO
DO jj = 1, jpj
v_ice_oe(2,jj,2) = vice_agr(2 ,jj)
v_ice_oe(4,jj,2) = vice_agr(nlci-1,jj)
END DO
DO ji = 1, jpi
u_ice_sn(ji,2,2) = uice_agr(ji,2 )
u_ice_sn(ji,4,2) = uice_agr(ji,nlcj-1)
END DO
DO jj = 1, 2
DO ji = 1, jpi
v_ice_sn(ji,jj ,2) = vice_agr(ji,jj )
v_ice_sn(ji,jj+2,2) = vice_agr(ji,nlcj+jj-3)
END DO
END DO
!
ENDIF
!
END SUBROUTINE agrif_rhg_lim2_load
SUBROUTINE agrif_rhg_lim2( kiter, kitermax, cd_type)
!!-----------------------------------------------------------------------
!! *** ROUTINE agrif_rhg_lim2 ***
!!
!! ** Method : simple call to atomic routines using stored values to
!! fill the boundaries depending of the position of the point and
!! computing factor for time interpolation
!!-----------------------------------------------------------------------
INTEGER, INTENT(in) :: kiter, kitermax
CHARACTER(len=1), INTENT( in ) :: cd_type
!!
REAL(wp) :: zalpha, zbeta
!!-----------------------------------------------------------------------
!
IF (Agrif_Root()) RETURN
zalpha = REAL(lim_nbstep,wp) / (Agrif_Rhot()*Agrif_PArent(nn_fsbc)/REAL(nn_fsbc))
zbeta = REAL(kiter,wp) / kitermax
zbeta = zalpha * zbeta
SELECT CASE(cd_type)
CASE('U')
CALL ParcoursU( zbeta )
CASE('V')
CALL ParcoursV( zbeta )
END SELECT
!
END SUBROUTINE agrif_rhg_lim2
SUBROUTINE ParcoursU( pbeta )
!!-----------------------------------------------------------------------
!! *** ROUTINE parcoursU ***
!!
!! ** Method : time and spatial interpolation for U-point using values
!! interpolated from the coarse grid and inside dvalues
!!-----------------------------------------------------------------------
REAL(wp), INTENT(in) :: pbeta
!!
INTEGER :: ji, jj
!!-----------------------------------------------------------------------
!
IF((nbondi == -1).OR.(nbondi == 2)) THEN
DO jj=1,jpj
DO ji=1,2
u_ice(ji,jj) = (1-pbeta) * u_ice_oe(ji,jj,1) + pbeta * u_ice_oe(ji,jj,2)
END DO
END DO
DO jj=1,jpj
u_ice(2,jj) = 0.25*(u_ice(1,jj)+2.*u_ice(2,jj)+u_ice(3,jj))
u_ice(2,jj) = u_ice(2,jj) * umask(2,jj,1)
END DO
ENDIF
IF((nbondi == 1).OR.(nbondi == 2)) THEN
DO jj=1,jpj
DO ji=1,2
u_ice(nlci+ji-3,jj) = (1-pbeta) * u_ice_oe(ji+2,jj,1) + pbeta * u_ice_oe(ji+2,jj,2)
END DO
END DO
DO jj=1,jpj
u_ice(nlci-2,jj) = 0.25*(u_ice(nlci-3,jj)+2.*u_ice(nlci-2,jj)+u_ice(nlci-1,jj))
u_ice(nlci-2,jj) = u_ice(nlci-2,jj) * umask(nlci-2,jj,1)
END DO
ENDIF
IF((nbondj == -1).OR.(nbondj == 2)) THEN
DO ji=1,jpi
u_ice(ji,2) = (1-pbeta) * u_ice_sn(ji,2,1) + pbeta * u_ice_sn(ji,2,2)
u_ice(ji,2) = u_ice(ji,2)*umask(ji,2,1)
END DO
ENDIF
IF((nbondj == 1).OR.(nbondj == 2)) THEN
DO ji=1,jpi
u_ice(ji,nlcj-1) = (1-pbeta) * u_ice_sn(ji,4,1) + pbeta * u_ice_sn(ji,4,2)
u_ice(ji,nlcj-1) = u_ice(ji,nlcj-1)*umask(ji,nlcj-1,1)
END DO
ENDIF
!
END SUBROUTINE ParcoursU
SUBROUTINE ParcoursV( pbeta )
!!-----------------------------------------------------------------------
!! *** ROUTINE parcoursV ***
!!
!! ** Method : time and spatial interpolation for V-point using values
!! interpolated from the coarse grid and inside dvalues
!!-----------------------------------------------------------------------
REAL(wp), INTENT(in) :: pbeta
!!
INTEGER :: ji, jj
!!-----------------------------------------------------------------------
!
IF((nbondi == -1).OR.(nbondi == 2)) THEN
DO jj=1,jpj
v_ice(2,jj) = (1-pbeta) * v_ice_oe(2,jj,1) + pbeta * v_ice_oe(2,jj,2)
v_ice(2,jj) = v_ice(2,jj) * vmask(2,jj,1)
END DO
ENDIF
IF((nbondi == 1).OR.(nbondi == 2)) THEN
DO jj=1,jpj
v_ice(nlci-1,jj) = (1-pbeta) * v_ice_oe(4,jj,1) + pbeta * v_ice_oe(4,jj,2)
v_ice(nlci-1,jj) = v_ice(nlci-1,jj)*vmask(nlci-1,jj,1)
END DO
ENDIF
IF((nbondj == -1).OR.(nbondj == 2)) THEN
DO jj=1,2
DO ji=1,jpi
v_ice(ji,jj) = (1-pbeta) * v_ice_sn(ji,jj,1) + pbeta * v_ice_sn(ji,jj,2)
END DO
END DO
DO ji=1,jpi
v_ice(ji,2)=0.25*(v_ice(ji,1)+2.*v_ice(ji,2)+v_ice(ji,3))
v_ice(ji,2)=v_ice(ji,2)*vmask(ji,2,1)
END DO
ENDIF
IF((nbondj == 1).OR.(nbondj == 2)) THEN
DO jj=1,2
DO ji=1,jpi
v_ice(ji,nlcj+jj-3) = (1-pbeta) * v_ice_sn(ji,jj+2,1) + pbeta * v_ice_sn(ji,jj+2,2)
END DO
END DO
DO ji=1,jpi
v_ice(ji,nlcj-2)=0.25*(v_ice(ji,nlcj-3)+2.*v_ice(ji,nlcj-2)+v_ice(ji,nlcj-1))
v_ice(ji,nlcj-2) = v_ice(ji,nlcj-2) * vmask(ji,nlcj-2,1)
END DO
ENDIF
!
END SUBROUTINE ParcoursV
# endif
SUBROUTINE agrif_trp_lim2_load
!!-----------------------------------------------------------------------
!! *** ROUTINE agrif_trp_lim2_load ***
!!
!! ** Method : need a special routine for dealing with exchanging data
!! between the child and parent grid during ice step
!! we interpolate and store the boundary if needed, ie if
!! we are in inside a new parent ice time step
!!-----------------------------------------------------------------------
INTEGER :: ji,jj,jn
!!-----------------------------------------------------------------------
!
IF (Agrif_Root()) RETURN
IF( lim_nbstep == 1. ) THEN
!
! switch old values
adv_ice_oe(:,:,:,1) = adv_ice_oe(:,:,:,2)
adv_ice_sn(:,:,:,1) = adv_ice_sn(:,:,:,2)
! interpolation of boundaries
IF(.NOT.ALLOCATED(tabice_agr))THEN
ALLOCATE(tabice_agr(jpi,jpj,7))
ENDIF
tabice_agr(:,:,:) = 0.
Agrif_SpecialValue=-9999.
Agrif_UseSpecialValue = .TRUE.
CALL Agrif_Bc_variable( adv_ice_id ,procname=interp_adv_ice,calledweight=1. )
Agrif_SpecialValue=0.
Agrif_UseSpecialValue = .FALSE.
!
! fill boundaries
DO jn =1,7
DO jj = 1, jpj
DO ji=1,2
adv_ice_oe(ji ,jj,jn,2) = tabice_agr(ji ,jj,jn)
adv_ice_oe(ji+2,jj,jn,2) = tabice_agr(nlci-2+ji,jj,jn)
END DO
END DO
END DO
Do jn =1,7
Do jj =1,2
DO ji = 1, jpi
adv_ice_sn(ji,jj ,jn,2) = tabice_agr(ji,jj ,jn)
adv_ice_sn(ji,jj+2,jn,2) = tabice_agr(ji,nlcj-2+jj,jn)
END DO
END DO
END DO
!
ENDIF
!
END SUBROUTINE agrif_trp_lim2_load
SUBROUTINE agrif_trp_lim2
!!-----------------------------------------------------------------------
!! *** ROUTINE agrif_trp_lim2 ***
!!
!! ** Method : time coefficient and call to atomic routines
!!-----------------------------------------------------------------------
INTEGER :: ji,jj,jn
REAL(wp) :: zalpha
!!-----------------------------------------------------------------------
!
IF (Agrif_Root()) RETURN
zalpha = REAL(lim_nbstep,wp) / (Agrif_Rhot()*Agrif_PArent(nn_fsbc)/REAL(nn_fsbc))
!
tabice_agr(:,:,:) = 0.e0
DO jn =1,7
DO jj =1,2
DO ji = 1, jpi
tabice_agr(ji,jj ,jn) = (1-zalpha)*adv_ice_sn(ji,jj ,jn,1) + zalpha*adv_ice_sn(ji,jj ,jn,2)
tabice_agr(ji,nlcj-2+jj ,jn) = (1-zalpha)*adv_ice_sn(ji,jj+2,jn,1) + zalpha*adv_ice_sn(ji,jj+2,jn,2)
END DO
END DO
END DO
DO jn =1,7
DO jj = 1, jpj
DO ji=1,2
tabice_agr(ji ,jj,jn) = (1-zalpha)*adv_ice_oe(ji ,jj,jn,1) + zalpha*adv_ice_oe(ji ,jj,jn,2)
tabice_agr(nlci-2+ji,jj,jn) = (1-zalpha)*adv_ice_oe(ji+2,jj,jn,1) + zalpha*adv_ice_oe(ji+2,jj,jn,2)
END DO
END DO
END DO
!
CALL parcoursT( tabice_agr(:,:, 1), frld )
CALL parcoursT( tabice_agr(:,:, 2), hicif )
CALL parcoursT( tabice_agr(:,:, 3), hsnif )
CALL parcoursT( tabice_agr(:,:, 4), tbif(:,:,1) )
CALL parcoursT( tabice_agr(:,:, 5), tbif(:,:,2) )
CALL parcoursT( tabice_agr(:,:, 6), tbif(:,:,3) )
CALL parcoursT( tabice_agr(:,:, 7), qstoif )
!
END SUBROUTINE agrif_trp_lim2
SUBROUTINE parcoursT ( pinterp, pfinal )
!!-----------------------------------------------------------------------
!! *** ROUTINE parcoursT ***
!!
!! ** Method : fill boundaries for T points
!!-----------------------------------------------------------------------
REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pinterp
REAL(wp), DIMENSION(jpi,jpj), INTENT(inout) :: pfinal
!!
REAL(wp) :: zbound, zvbord
REAL(wp), DIMENSION(jpi,jpj) :: zui_u, zvi_v
INTEGER :: ji, jj
!!-----------------------------------------------------------------------
!
zui_u = 0.e0
zvi_v = 0.e0
! zvbord factor between 1 and 2 to take into account slip or no-slip boundary conditions.
zbound=0.
zvbord = 1.0 + ( 1.0 - zbound )
#if defined key_lim2_vp
DO jj = 1, jpjm1
DO ji = 1, jpim1
zui_u(ji,jj) = ( u_ice(ji+1,jj ) + u_ice(ji+1,jj+1) ) / ( MAX( tmu(ji+1,jj ) + tmu(ji+1,jj+1), zvbord ) )
zvi_v(ji,jj) = ( v_ice(ji ,jj+1) + v_ice(ji+1,jj+1) ) / ( MAX( tmu(ji ,jj+1) + tmu(ji+1,jj+1), zvbord ) )
END DO
END DO
#else
zui_u(:,:) = u_ice(:,:)
zvi_v(:,:) = v_ice(:,:)
#endif
IF((nbondi == -1).OR.(nbondi == 2)) THEN
DO jj=1,jpj
! IF (zui_u(2,jj).EQ.0.) THEN
! pfinal (2,jj) = pfinal (1,jj) * tms(2,jj)
! ELSE
pfinal(2,jj) = 0.25* pinterp(1,jj) + 0.5 * pinterp(2,jj) + 0.25 *pfinal(3,jj)
! ENDIF
END DO
ENDIF
IF((nbondj == -1).OR.(nbondj == 2)) THEN
DO ji=1,jpi
! IF (zvi_v(ji,2).EQ.0.) THEN
! pfinal (ji,2) = pfinal (ji,1) * tms(ji,2)
! ELSE
pfinal(ji,2) = 0.25* pinterp(ji,1) + 0.5 * pinterp(ji,2) + 0.25 *pfinal(ji,3)
! ENDIF
END DO
ENDIF
IF((nbondi == 1).OR.(nbondi == 2)) THEN
DO jj=1,jpj
! IF (zui_u(nlci-2,jj).EQ.0.) THEN
! pfinal(nlci-1,jj) = pfinal (nlci,jj) * tms(nlci-1,jj)
! ELSE
pfinal(nlci-1,jj) = 0.25* pinterp(nlci,jj) + 0.5 * pinterp(nlci-1,jj) + 0.25 *pfinal(nlci-2,jj)
! ENDIF
END DO
ENDIF
IF((nbondj == 1).OR.(nbondj == 2)) THEN
DO ji=1,jpi
! IF (zvi_v(ji,nlcj-2).EQ.0.) THEN
! pfinal (ji,nlcj-1) = pfinal(ji,nlcj) * tms(ji,nlcj-1)
! ELSE
pfinal(ji,nlcj-1) = 0.25* pinterp(ji,nlcj) + 0.5 * pinterp(ji,nlcj-1) + 0.25 *pfinal(ji,nlcj-2)
! ENDIF
END DO
ENDIF
pfinal (:,:) = pfinal (:,:) * tms(:,:)
!
END SUBROUTINE parcoursT
SUBROUTINE interp_u_ice( tabres, i1, i2, j1, j2, before )
!!-----------------------------------------------------------------------
!! *** ROUTINE interp_u_ice ***
!!-----------------------------------------------------------------------
INTEGER, INTENT(in) :: i1, i2, j1, j2
REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: tabres
LOGICAL, INTENT(in) :: before
!!
INTEGER :: ji,jj
!!-----------------------------------------------------------------------
!
#if defined key_lim2_vp
IF( before ) THEN
DO jj=MAX(j1,2),j2
DO ji=MAX(i1,2),i2
IF( tmu(ji,jj) == 0. ) THEN
tabres(ji,jj) = -9999.
ELSE
tabres(ji,jj) = e2f(ji-1,jj-1) * u_ice(ji,jj)
ENDIF
END DO
END DO
ELSE
DO jj=MAX(j1,2),j2
DO ji=MAX(i1,2),i2
uice_agr(ji,jj) = tabres(ji,jj)
END DO
END DO
ENDIF
#else
IF( before ) THEN
DO jj= j1, j2
DO ji= i1, i2
IF( umask(ji,jj,1) == 0. ) THEN
tabres(ji,jj) = -9999.
ELSE
tabres(ji,jj) = e2u(ji,jj) * u_ice(ji,jj)
ENDIF
END DO
END DO
ELSE
DO jj= j1, j2
DO ji= i1, i2
uice_agr(ji,jj) = tabres(ji,jj)
END DO
END DO
ENDIF
#endif
END SUBROUTINE interp_u_ice
SUBROUTINE interp_v_ice( tabres, i1, i2, j1, j2, before )
!!-----------------------------------------------------------------------
!! *** ROUTINE interp_v_ice ***
!!-----------------------------------------------------------------------
INTEGER, INTENT(in) :: i1, i2, j1, j2
REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: tabres
LOGICAL, INTENT(in) :: before
!!
INTEGER :: ji, jj
!!-----------------------------------------------------------------------
!
#if defined key_lim2_vp
IF( before ) THEN
DO jj=MAX(j1,2),j2
DO ji=MAX(i1,2),i2
IF( tmu(ji,jj) == 0. ) THEN
tabres(ji,jj) = -9999.
ELSE
tabres(ji,jj) = e1f(ji-1,jj-1) * v_ice(ji,jj)
ENDIF
END DO
END DO
ELSE
DO jj=MAX(j1,2),j2
DO ji=MAX(i1,2),i2
vice_agr(ji,jj) = tabres(ji,jj)
END DO
END DO
ENDIF
#else
IF( before ) THEN
DO jj= j1 ,j2
DO ji = i1, i2
IF( vmask(ji,jj,1) == 0. ) THEN
tabres(ji,jj) = -9999.
ELSE
tabres(ji,jj) = e1v(ji,jj) * v_ice(ji,jj)
ENDIF
END DO
END DO
ELSE
DO jj= j1 ,j2
DO ji = i1, i2
vice_agr(ji,jj) = tabres(ji,jj)
END DO
END DO
ENDIF
#endif
END SUBROUTINE interp_v_ice
SUBROUTINE interp_adv_ice( tabres, i1, i2, j1, j2, k1, k2, before )
!!-----------------------------------------------------------------------
!! *** ROUTINE interp_adv_ice ***
!!
!! ** Purpose : fill an array with ice variables
!! to be advected
!! put -9999 where no ice for correct extrapolation
!!-----------------------------------------------------------------------
INTEGER, INTENT(in) :: i1, i2, j1, j2, k1, k2
REAL(wp), DIMENSION(i1:i2,j1:j2,k1:k2), INTENT(inout) :: tabres
LOGICAL, INTENT(in) :: before
!!
INTEGER :: ji, jj, jk
!!-----------------------------------------------------------------------
!
IF( before ) THEN
DO jj=j1,j2
DO ji=i1,i2
IF( tms(ji,jj) == 0. ) THEN
tabres(ji,jj,:) = -9999
ELSE
tabres(ji,jj, 1) = frld (ji,jj)
tabres(ji,jj, 2) = hicif (ji,jj)
tabres(ji,jj, 3) = hsnif (ji,jj)
tabres(ji,jj, 4) = tbif (ji,jj,1)
tabres(ji,jj, 5) = tbif (ji,jj,2)
tabres(ji,jj, 6) = tbif (ji,jj,3)
tabres(ji,jj, 7) = qstoif(ji,jj)
ENDIF
END DO
END DO
ELSE
DO jj=j1,j2
DO ji=i1,i2
DO jk=k1, k2
tabice_agr(ji,jj,jk) = tabres(ji,jj,jk)
END DO
END DO
END DO
ENDIF
!
END SUBROUTINE interp_adv_ice
#else
CONTAINS
SUBROUTINE agrif_lim2_interp_empty
!!---------------------------------------------
!! *** ROUTINE agrif_lim2_interp_empty ***
!!---------------------------------------------
WRITE(*,*) 'agrif_lim2_interp : You should not have seen this print! error?'
END SUBROUTINE agrif_lim2_interp_empty
#endif
END MODULE agrif_lim2_interp