forked from guido57/EBAZ4205_SDR_spectrum
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwindow_functions.cpp
653 lines (534 loc) · 17.5 KB
/
window_functions.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
////////////////////////
// window_functions.c //
////////////////////////
#include <complex.h>
#include <math.h>
#include "window_functions.h"
#ifndef M_PI
#define M_PI 3.14159265358979323846264338327
#endif
void cosine_window(double * w, unsigned n, const double * coeff, unsigned ncoeff, bool sflag)
{
// Generalized cosine window.
//
// Many window functions described in signal processing literature
// can be written as linear combinations of cosines over the window length.
//
// Let 'x' be values going from 0 for the first element, and 2*pi for the last element.
//
// The window can then be written as:
//
// w = c0 * cos(0 * x) + c1 * cos(1 * x) + c2 * cos(2 * x) + c3 * cos(3 * x) + ...
//
// (Note that the first term simplifies to just the constant value c0.)
//
// Examples of cosine windows implemented in Matlab:
//
// c0 c1 c2 c3 c4
// -------------------------------------------------------------------------------------------
// rectangular window 1.0
// hann window 0.5 -0.5
// hamming window 0.54 -0.46
// blackman window 0.42 -0.5 0.08
// blackman-harris window 0.35875 -0.48829 0.14128 -0.01168
// nuttall window 0.3635819 -0.4891775 0.1365995 -0.0106411
// flattop window 0.21557895 -0.41663158 0.277263158 -0.083578947 0.006947368
//
// The "flattop" coefficients given above follow Matlab's "flattopwin" implementation.
// The signal processing literature in fact describes many different 'flattop' windows.
//
// Note 1 : Octave defines the flattopwin coefficients differently, see implementation below.
//
// The coefficient values used correspond to:
//
// [0.21550795224343777, -0.4159303478298349, 0.2780052583940347, -0.08361708547045386, 0.006939356062238697]
//
// Note 2 : Octave defines the nuttallwin coefficients differently, see implementation below:
//
// The coefficient values used are:
//
// [0.355768, -0.487396, 0.144232, -0.012604]
if (n == 1)
{
// Special case for n == 1.
w[0] = 1.0;
}
else
{
const unsigned wlength = sflag ? (n - 1) : n;
for (unsigned i = 0; i < n; ++i)
{
double wi = 0.0;
for (unsigned j = 0; j < ncoeff; ++j)
{
wi += coeff[j] * cos(i * j * 2.0 * M_PI / wlength);
}
w[i] = wi;
}
}
}
void rectwin(double * w, unsigned n)
{
// Technically, this is a cosine window with coefficient {1}.
for (unsigned i = 0; i < n; ++i)
{
w[i] = 1.0;
}
}
void hann(double * w, unsigned n, bool sflag)
{
// Hann window.
//
// Extrema are 0.
// Center value is 1 for odd length,
// 0.5 - 0.5 * cos(pi * L / (L - 1)) for even length.
const double coeff[2] = { 0.5, -0.5 };
cosine_window(w, n, coeff, sizeof(coeff) / sizeof(double), sflag);
}
void hamming(double * w, unsigned n, bool sflag)
{
// Hamming window
//
//
// Note that the Hamming window is raised; its extreme values are 0.08.
//
// The center value is 1 for odd length;
// The venter values are 0.54 - 0.46 * cos(pi * L / (L - 1)) for even length.
const double coeff[2] = { 0.54, -0.46 };
cosine_window(w, n, coeff, sizeof(coeff) / sizeof(double), sflag);
}
void blackman(double * w, unsigned n, bool sflag)
{
// Blackman window
const double coeff[3] = { 0.42, -0.5, 0.08 };
cosine_window(w, n, coeff, sizeof(coeff) / sizeof(double), sflag);
}
void blackmanharris(double * w, unsigned n, bool sflag)
{
// Blackman-Harris window
//
// Note: very similar to the Nuttall window.
const double coeff[4] = { 0.35875, -0.48829, 0.14128, -0.01168 };
cosine_window(w, n, coeff, sizeof(coeff) / sizeof(double), sflag);
}
void nuttallwin(double * w, unsigned n, bool sflag)
{
// Nuttall window
//
// Note: very similar to the Blackman-Harris window.
const double coeff[4] = { 0.3635819, -0.4891775, 0.1365995, -0.0106411 };
cosine_window(w, n, coeff, sizeof(coeff) / sizeof(double), sflag);
}
void nuttallwin_octave(double * w, unsigned n, bool sflag)
{
// Nuttall window (Octave version)
const double coeff[4] = { 0.355768, -0.487396, 0.144232, -0.012604 };
cosine_window(w, n, coeff, sizeof(coeff) / sizeof(double), sflag);
}
void flattopwin(double * w, unsigned n, bool sflag)
{
// Flattop window
//
// This window contains negative values.
const double coeff[5] = { 0.21557895, -0.41663158, 0.277263158, -0.083578947, 0.006947368 };
cosine_window(w, n, coeff, sizeof(coeff) / sizeof(double), sflag);
}
void flattopwin_octave(double * w, unsigned n, bool sflag)
{
// Flattop window (Octave version)
//
// This window contains negative values.
const double coeff[5] = { 1.0 / 4.6402, -1.93 / 4.6402, 1.29 / 4.6402, -0.388 / 4.6402, 0.0322 / 4.6402 };
cosine_window(w, n, coeff, sizeof(coeff) / sizeof(double), sflag);
}
void triang(double * w, unsigned n)
{
// Triangular window
//
// triang(1) == { 1.0 }
// triang(2) == { 0.5 0.5 }
// triang(3) == { 0.5 1.0 0.5 }
// triang(4) == { 0.25 0.75 0.75 0.25 }
// triang(5) == { 0.33 0.66 1.0 0.66 0.33 }
// triang(6) == { 0.16 0.50 0.83 0.83 0.50 0.16 }
//
// Even length:
//
// Center values are (1 - 1 / L); extrema are (1 / L).
//
// Odd length:
//
// Center value is 1; extrema are 2 / (L + 1).
const unsigned denominator = (n % 2 != 0) ? (n + 1) : n;
for (unsigned i = 0; i < n; ++i)
{
w[i] = 1.0 - fabs(2.0 * i - (n - 1)) / denominator;
}
}
void bartlett(double * w, unsigned n)
{
// Bartlett window
//
// bartlett(1) == { 1.0 }
// bartlett(2) == { 0.0 0.0 }
// bartlett(3) == { 0.0 1.0 0.0 }
// bartlett(4) == { 0.0 0.66 0.66 0.0 }
// bartlett(5) == { 0.0 0.5 1.0 0.5 0.0 }
// bartlett(6) == { 0.0 0.4 0.8 0.8 0.4 0.0 }
//
// Center value is 1 for odd length, 1 - 1 / (L - 1) for even length.
// Extrema are 0.
if (n == 1)
{
// Special case for n == 1.
w[0] = 1.0;
}
else
{
const unsigned denominator = (n - 1);
for (unsigned i = 0; i < n; ++i)
{
w[i] = 1.0 - fabs(2.0 * i - (n - 1)) / denominator;
}
}
}
void barthannwin(double * w, unsigned n)
{
// Modified Bartlett-Hann window.
if (n == 1)
{
// Special case for n == 1.
w[0] = 1.0;
}
else
{
for (unsigned i = 0; i < n; ++i)
{
const double x = fabs(i / (n - 1.0) - 0.5);
w[i] = 0.62 - 0.48 * x + 0.38 * cos(2.0 * M_PI * x);
}
}
}
void bohmanwin(double * w, unsigned n)
{
// Bohmann window.
if (n == 1)
{
// Special case for n == 1.
w[0] = 1.0;
}
else
{
for (unsigned i = 0; i < n; ++i)
{
const double x = fabs(2.0 * i - (n - 1)) / (n - 1);
w[i] = (1.0 - x) * cos(M_PI * x) + sin(M_PI * x) / M_PI;
}
}
}
void parzenwin(double * w, unsigned n)
{
// The Parzen window.
//
// This is an approximation of the Gaussian window.
// The Gaussian shape is approximated by two different polynomials, one for x < 0.5 and one for x > 0.5.
// At x == 0.5, the polynomials meet. The minimum value of the two polynomials is taken.
if (n == 1)
{
// Special case for n == 1.
w[0] = 1.0;
}
else
{
for (unsigned i = 0; i < n; ++i)
{
const double x = fabs(2.0 * i - (n - 1)) / n;
const double y = 1.0 - x;
w[i] = fmin(1.0 - 6.0 * x * x + 6.0 * x * x * x, 2.0 * y * y * y);
}
}
}
void gausswin(double * w, unsigned n, double alpha)
{
// Gaussian window.
// The parameter for the gausswin() function is different for the Matlab, Octave, and SciPy versions of
// this function:
// - Matlab uses "Alpha", with a default value of 2.5.
// - Octave uses "A";
// - Scipy uses "std".
// Matlab vs SciPy: Alpha * std == (N - 1) / 2
// Matlab vs Octave: Alpha * N == A * (N - 1)
// In this implementation, we follow the Matlab convention.
if (n == 1)
{
// Special case for n == 1.
w[0] = 1.0;
}
else
{
for (unsigned i = 0; i < n; ++i)
{
const double x = fabs(2.0 * i - (n - 1)) / (n - 1);
const double ax = alpha * x;
const double ax_squared = ax * ax;
w[i] = exp( -0.5 * ax_squared);
}
}
}
void tukeywin(double * w, unsigned n, double r)
{
// Tukey window.
// This window uses a cosine-shaped ramp-up and ramp-down, with an all-one part in the middle.
// The parameter 'r' defines the fraction of the window covered by the ramp-up and ramp-down.
// r <= 0 is identical to a rectangular window.
// r >= 1 is identical to a Hann window.
//
// In Matlab, the default value for parameter r is 0.5.
if (n == 1)
{
// Special case for n == 1.
w[0] = 1.0;
}
else
{
r = fmax(0.0, fmin(1.0, r)); // Clip between 0 and 1.
for (unsigned i = 0; i < n; ++i)
{
w[i] = (cos(fmax(fabs((double)i - (n - 1) / 2.0) * (2.0 / (n - 1) / r) - (1.0 / r - 1.0), 0.0) * M_PI) + 1.0) / 2.0;
}
}
}
static inline double sq(double x)
{
return x * x;
}
void taylorwin(double * w, unsigned n, unsigned nbar, double sll)
{
// Taylor window.
//
// Default Matlab parameters: nbar ==4, sll == -30.0.
//
// The Taylor window is cosine-window like, in that it is the sum of weighted
// cosines of different periods.
// sll is in dB(power).
// Calculate the amplification factor, e.g. sll = -60 --> amplification = 1000.0
const double amplification = pow(10.0, -sll / 20.0);
const double a = acosh(amplification) / M_PI;
const double a2 = sq(a);
// Taylor pulse widening (dilation) factor.
const double sp2 = sq(nbar) / (a2 + sq(nbar - 0.5));
for (unsigned i = 0; i < n; ++i)
{
w[i] = 1.0; // Initial value.
}
for (unsigned m = 1; m < nbar; ++m)
{
// Calculate Fm as a function of: m, sp2, a
double numerator = 1.0;
double denominator = 1.0;
for (unsigned i = 1; i < nbar; ++i)
{
numerator *= (1.0 - sq(m) / (sp2 * (a2 + sq(i - 0.5))));
if (i != m)
{
denominator *= (1.0 - sq(m) / sq(i));
}
}
const double Fm = -(numerator / denominator);
// Add cosine term to each of the window components.
for (unsigned i = 0; i < n; ++i)
{
const double x = 2 * M_PI * (i + 0.5) / n;
w[i] += Fm * cos(m * x);
}
}
}
static double chbevl(double x, const double * coeff, unsigned n)
{
// This implementation was derived from the Cephes Math Library implementation:
//
// Cephes Math Library Release 2.8: June, 2000
// Copyright 1984, 1987, 2000 by Stephen L. Moshier
// Evaluate Chebyshev polynomial at 'x'.
double b0 = 0.0;
double b1 = 0.0;
double b2;
for (unsigned i = 0; i < n; ++i)
{
b2 = b1;
b1 = b0;
b0 = x * b1 - b2 + coeff[i];
}
return 0.5 * (b0 - b2);
}
static double bessel_i0(double x)
{
// This implementation was derived from the Cephes Math Library implementation:
//
// Cephes Math Library Release 2.8: June, 2000
// Copyright 1984, 1987, 2000 by Stephen L. Moshier
// This function is needed for the calculation of the Kaiser window function.
const double A[30] = {
-4.41534164647933937950e-18, 3.33079451882223809783e-17,
-2.43127984654795469359e-16, 1.71539128555513303061e-15,
-1.16853328779934516808e-14, 7.67618549860493561688e-14,
-4.85644678311192946090e-13, 2.95505266312963983461e-12,
-1.72682629144155570723e-11, 9.67580903537323691224e-11,
-5.18979560163526290666e-10, 2.65982372468238665035e-9,
-1.30002500998624804212e-8, 6.04699502254191894932e-8,
-2.67079385394061173391e-7, 1.11738753912010371815e-6,
-4.41673835845875056359e-6, 1.64484480707288970893e-5,
-5.75419501008210370398e-5, 1.88502885095841655729e-4,
-5.76375574538582365885e-4, 1.63947561694133579842e-3,
-4.32430999505057594430e-3, 1.05464603945949983183e-2,
-2.37374148058994688156e-2, 4.93052842396707084878e-2,
-9.49010970480476444210e-2, 1.71620901522208775349e-1,
-3.04682672343198398683e-1, 6.76795274409476084995e-1
};
const double B[25] = {
-7.23318048787475395456e-18, -4.83050448594418207126e-18,
4.46562142029675999901e-17, 3.46122286769746109310e-17,
-2.82762398051658348494e-16, -3.42548561967721913462e-16,
1.77256013305652638360e-15, 3.81168066935262242075e-15,
-9.55484669882830764870e-15, -4.15056934728722208663e-14,
1.54008621752140982691e-14, 3.85277838274214270114e-13,
7.18012445138366623367e-13, -1.79417853150680611778e-12,
-1.32158118404477131188e-11, -3.14991652796324136454e-11,
1.18891471078464383424e-11, 4.94060238822496958910e-10,
3.39623202570838634515e-9, 2.26666899049817806459e-8,
2.04891858946906374183e-7, 2.89137052083475648297e-6,
6.88975834691682398426e-5, 3.36911647825569408990e-3,
8.04490411014108831608e-1
};
x = fabs(x);
if (x <= 8.0)
{
return exp(x) * chbevl(x / 2.0 - 2.0, A, 30);
}
else
{
return exp(x) * chbevl(32.0 / x - 2.0, B, 25) / sqrt(x);
}
}
void kaiser(double * w, unsigned n, double beta)
{
// Kaiser window.
//
// In Matlab, the default value for parameter beta is 0.5.
if (n == 1)
{
// Special case for n == 1.
w[0] = 1.0;
}
else
{
for (unsigned i = 0; i < n; ++i)
{
const double x = (2.0 * i - (n - 1)) / (n - 1);
w[i] = bessel_i0(beta * sqrt(1.0 - x * x)) / bessel_i0(beta);
}
}
}
/*
void chebwin(double * w, unsigned n, double r)
{
// Chebyshev window.
//
// Default value of the "r" parameter is 100.0.
if (n == 1)
{
// Special case for n == 1.
w[0] = 1.0;
}
else
{
const unsigned order = n - 1;
// r is in dB(power).
// Calculate the amplification factor, e.g. r = +60 --> amplification = 1000.0
const double amplification = pow(10.0, fabs(r) / 20.0);
const double beta = cosh(acosh(amplification) / order);
// Find the window's DFT coefficients
complex double p[n];
// Appropriate IDFT and filling up, depending on even/odd length.
if (n % 2 != 0)
{
// Odd length window
for (unsigned i = 0; i < n; ++i)
{
const double x = beta * cos(M_PI * i / n);
if (x > 1.0)
{
p[i] = cosh(order * acosh(x));
}
else if (x < -1.0)
{
p[i] = cosh(order * acosh(-x));
}
else
{
p[i] = cos (order * acos(x));
}
}
czt_fft(p, n);
// Example: n = 11
//
// w[0] w[1] w[2] w[3] w[4] w[5] w[6] w[7] w[8] w[9] w[10]
//
// =
//
// p[5] p[4] p[3] p[2] p[1] p[0] p[1] p[2] p[3] p[4] p[5]
const unsigned h = (n - 1) / 2;
for (unsigned i = 0; i < n; ++i)
{
const unsigned j = (i <= h) ? (h - i) : (i - h);
w[i] = creal(p[j]);
}
}
else
{
// Even length window
for (unsigned i = 0; i < n; ++i)
{
const double x = beta * cos(M_PI * i / n);
const complex double z = cexp(M_PI * I * i / n);
if (x > 1)
{
p[i] = z * cosh(order * acosh( x));
}
else if (x < -1)
{
p[i] = -z * cosh(order * acosh(-x));
}
else
{
p[i] = z * cos (order * acos ( x));
}
}
czt_fft(p, n);
// Example: n = 10
//
// w[0] w[1] w[2] w[3] w[4] w[5] w[6] w[7] w[8] w[9]
//
// =
//
// p[5] p[4] p[3] p[2] p[1] p[1] p[2] p[3] p[4] p[5]
const unsigned h = n / 2;
for (unsigned i = 0; i < n; ++i)
{
const unsigned j = (i < h) ? (h - i) : (i - h + 1);
w[i] = creal(p[j]);
}
}
// Normalize window so the maximum value is 1.
double maxw = w[0];
for (unsigned i = 1; i < n; ++i)
{
maxw = fmax(maxw, w[i]);
}
for (unsigned i = 0; i < n; ++i)
{
w[i] /= maxw;
}
}
}
*/