-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcf.py
274 lines (193 loc) · 10 KB
/
cf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
from flask import Flask
from flask import request, jsonify, json, redirect
from flask import render_template
import pandas as pd
import numpy as np
from explainx_cf.WebApplication.model import *
from explainx_cf.WebApplication.utils import *
from explainx_cf.WebApplication.individual_explanation import *
from explainx_cf.WebApplication.global_explanations import *
from explainx_cf.WebApplication.queries import *
from explainx_cf.WebApplication.d3_functions import *
from explainx_cf.WebApplication.preprocessing import create_summary_file
from explainx_cf.WebApplication.distance_function import generate_projection_files, reduce_raw_data
from explainx_cf.WebApplication.projection import show_projection2, full_projection
import os
from os import path
from explainx_cf.WebApplication.run import *
# ============= Initialize model =========== #
# --- Setting random seed ---
np.random.seed(150)
# --- Resets all stored files ---
reset = False
# --- Dataset Selection ---
admissions_dataset = dataset("admissions", [6]) # (Conversion : Good > 0.7 )
diabetes_dataset = dataset("diabetes", [])
fico_dataset = dataset("fico", [0])
heart_dataset = dataset("heart", [1,5,6,8])
delinquency_dataset = dataset("delinquency", [9])
wine_dataset = dataset("wine", [])
paysim_dataset = dataset("paysim", [])
# --- Finance Datasets ---
dataset_dict = {
'admissions': admissions_dataset,
'diabetes': diabetes_dataset,
'fico': fico_dataset,
'heart': heart_dataset,
'delinquency': delinquency_dataset,
'wine':wine_dataset,
'paysim':paysim_dataset
}
def init_data_model(X,y, model, model_name):
column_names= X.columns
X["target"]= y
## init_data start
global data_name, lock, folder_path, data_path, preproc_path, projection_changes_path,reduced_data_path, projection_anchs_path, no_bins, df, model_path, density_fineness, bins_used
global categorical_cols, monotonicity_arr, feature_selector_input, feature_names, all_data, data, metadata, target, no_samples, no_features, svm_model, bins_centred, X_pos_array, init_vals
global col_ranges, all_den, all_median, all_mean, high_den, high_median, high_mean, low_den, low_median, low_mean, dict_array, dict_array_orig, percentage_filter_input
# --- Data initialization ---
data_name, lock, folder_path, data_path, preproc_path, projection_changes_path, reduced_data_path, projection_anchs_path, no_bins, df, model_path, density_fineness, bins_used = np.zeros(13)
categorical_cols, monotonicity_arr, feature_selector_input, feature_names, all_data, data, metadata, target, no_samples, no_features, svm_model, bins_centred, X_pos_array, init_vals = np.zeros(14)
col_ranges, all_den, all_median, all_mean, high_den, high_median, high_mean, low_den, low_median, low_mean, dict_array, dict_array_orig, percentage_filter_input = np.zeros(13)
dataset= dataset_dict['heart']
dataset.lock
# data_name = dataset.name
data_name= "data"
lock = dataset.lock
# --- Path Parameters ---
folder_path = "explainx_cf/WebApplication/static/data/" + data_name + '/'
data_path = folder_path + data_name + ".csv"
preproc_path = folder_path + data_name + "_preproc.csv"
projection_changes_path = folder_path + data_name + "_changes_proj.csv"
projection_anchs_path = folder_path + data_name + "_anchs_proj.csv"
reduced_data_path = folder_path + data_name + "_raw_proj"
# print(reduced_data_path)
no_bins = 21
bins_used = 20
df = X
model_path = "TBD" # Manual?
# --- Advanced Parameters
density_fineness = 100
categorical_cols = [] # Categorical columns can be customized # Whether there is order
# monotonicity_arr = [] # Local test of monotonicity
feature_names = np.array(df.columns)[:-1]
all_data = np.array(df.values)
# --- Split data and target values ---
data = all_data[:,:-1]
# data = np.array(data, dtype=float)
target = all_data[:,-1]
# --- Filter data by class ---
high_data = all_data[all_data[:,-1] == 1][:,:-1]
low_data = all_data[all_data[:,-1] == 0][:,:-1]
no_samples, no_features = data.shape
svm_model= external_models()
svm_model.set_model(model)
svm_model.set_model_name(model_name)
svm_model.set_col_names(column_names)
bins_centred, X_pos_array, init_vals, col_ranges = divide_data_bins(data,no_bins) # Note: Does not account for categorical features
all_den, all_median, all_mean = all_kernel_densities(data,feature_names,density_fineness) # Pre-load density distributions
high_den, high_median, high_mean = all_kernel_densities(high_data,feature_names,density_fineness)
low_den, low_median, low_mean = all_kernel_densities(low_data,feature_names,density_fineness)
monotonicity_arr = mono_finder(svm_model, data, col_ranges)
bins_centred, X_pos_array, init_vals, col_ranges = divide_data_bins(data,no_bins) # Note: Does not account for categorical features
all_den, all_median, all_mean = all_kernel_densities(data,feature_names,density_fineness) # Pre-load density distributions
high_den, high_median, high_mean = all_kernel_densities(high_data,feature_names,density_fineness)
low_den, low_median, low_mean = all_kernel_densities(low_data,feature_names,density_fineness)
monotonicity_arr = mono_finder(svm_model, data, col_ranges)
bins_centred, X_pos_array, init_vals, col_ranges = divide_data_bins(data,no_bins) # Note: Does not account for categorical features
all_den, all_median, all_mean = all_kernel_densities(data,feature_names,density_fineness) # Pre-load density distributions
high_den, high_median, high_mean = all_kernel_densities(high_data,feature_names,density_fineness)
low_den, low_median, low_mean = all_kernel_densities(low_data,feature_names,density_fineness)
monotonicity_arr = mono_finder(svm_model, data, col_ranges)
# ==== FEATURE SELECTOR ====
# init_vals = [0,10]
samples4test = []
feature_selector_input = []
for i in range(no_features):
feature_selector_input.append(prep_feature_selector(data, i, feature_names, col_ranges, no_bins, samples4test))# 0 indexed
# If no init vals known then leave blank.
# --- Perform Preprocessing if new data ---
if not path.exists(preproc_path):
create_summary_file(data, target, svm_model, bins_centred, X_pos_array, init_vals, no_bins, monotonicity_arr, preproc_path, col_ranges, lock)
elif reset:
os.remove(preproc_path)
create_summary_file(data, target, svm_model, bins_centred, X_pos_array, init_vals, no_bins, monotonicity_arr, preproc_path, col_ranges, lock)
# --- Projection Files ---
if ((not path.exists(projection_changes_path[:-4]+"_PCA.csv")) or (not path.exists(projection_anchs_path[:-4]+"_PCA.csv"))):
generate_projection_files(preproc_path, data, target, projection_changes_path, projection_anchs_path)
elif reset:
os.remove(projection_changes_path[:-4]+"_PCA.csv")
os.remove(projection_anchs_path[:-4]+"_PCA.csv")
os.remove(projection_changes_path[:-4]+"_TSNE.csv")
os.remove(projection_anchs_path[:-4]+"_TSNE.csv")
generate_projection_files(preproc_path, data, target, projection_changes_path, projection_anchs_path)
# --- Dimensionality reduction ---
if (not path.exists(reduced_data_path+"_TSNE.csv")) or (not path.exists(reduced_data_path+"_PCA.csv")):
reduce_raw_data(data, reduced_data_path, "PCA")
reduce_raw_data(data, reduced_data_path, "TSNE")
elif reset:
os.remove(reduced_data_path+"_TSNE.csv")
os.remove(reduced_data_path+"_PCA.csv")
reduce_raw_data(data, reduced_data_path, "PCA")
reduce_raw_data(data, reduced_data_path, "TSNE")
# --- Metadata ---
metadata = pd.read_csv(preproc_path, index_col=False).values
# --- Percentage Filter ---
samples_selected = [x for x in range(100)]
percentage_filter_input = prep_percentage_filter(metadata, bins_used, samples_selected)
conf_matrix_input = prep_confusion_matrix(metadata, samples_selected)
one_compset = prep_complete_data(metadata, data, feature_names, samples_selected ,col_ranges, bins_centred, X_pos_array, 0)
all_params = {
'data_name': data_name,
'lock': lock,
'folder_path': folder_path,
'data_path': data_path,
'preproc_path': preproc_path,
'projection_changes_path': projection_changes_path,
'projection_anchs_path': projection_anchs_path,
'no_bins': no_bins,
'df': df,
'model_path': model_path,
'density_fineness': density_fineness,
'categorical_cols': categorical_cols,
'monotonicity_arr': monotonicity_arr,
'feature_selector_input': feature_selector_input,
'percentage_filter_input': percentage_filter_input,
'feature_names': feature_names,
'all_data': all_data,
'data': data,
'metadata':metadata,
'target': target,
'no_samples': no_samples,
'no_features': no_features,
'svm_model': svm_model,
'bins_centred': bins_centred,
'X_pos_array': X_pos_array,
'init_vals': init_vals,
'col_ranges': col_ranges,
'all_den': all_den,
'all_median': all_median,
'all_mean': all_mean,
'dict_array': dict_array,
'dict_array_orig': dict_array_orig,
'reduced_data_path':reduced_data_path,
'bins_used':bins_used
}
return all_params
class explain():
def __init__(self):
super(explain, self).__init__()
self.param= {}
def counterfactuals(self, X,y, model, model_name="random_forest"):
# --- Parameter Dictionary ---
PD = init_data_model(X,y, model, model_name= model_name)
data_in(PD)
run_app()
def dataset_heloc(self):
dataset= pd.read_csv("explainx_cf/heloc_dataset.csv")
map_riskperformance= {"RiskPerformance": {"Good":1, "Bad":0}}
dataset.replace(map_riskperformance, inplace=True)
y= list(dataset["RiskPerformance"])
X= dataset.drop("RiskPerformance", axis=1)
return X,y
explainx_cf=explain()