-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpatterns.py
206 lines (168 loc) · 7.1 KB
/
patterns.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import numpy as np
import random as rd
from similar_sections import ss
import data, analyze, sys, time
class SegmentationTree(object):
def __init__(self):
self.label = label
def fetch_classifier():
try:
from sklearn.externals import joblib
c = joblib.load('cached/classifier.pkl')
except Exception, e:
print e
print "Retraining classifier..."
from sklearn.externals import joblib
c = analyze.train_classifier(analyze.generate())
joblib.dump(c, 'cached/classifier.pkl')
return c
class timer:
def __init__(self, print_string):
self.print_string = print_string
def __enter__(self):
self.start_time = time.time()
def __exit__(self, type, value, traceback):
self.end_time = time.time()
elapsed = int(self.end_time - self.start_time)
print self.print_string, '<time taken: {}m {}s>'.format(elapsed / 60, elapsed % 60)
def preprocess_segments(Piece, c):
segs = {}
d = {}
with timer("Preprocess_segments: 1/2"):
for k in range(1, Piece.num_bars + 1):
print "Preprocess Segments: Part 1/2; Part {}/{}".format(k, Piece.num_bars)
segs = {}
for i in range(Piece.num_bars - k + 1):
segment = Piece.segment_by_bars(i, i+k)
segs[(i, i+k)] = segment
for i in range(Piece.num_bars - k + 1):
segment_i = segs[(i, i+k)]
for j in range(Piece.num_bars - k + 1):
key = (i, j, k)
if i == j:
d[key] = 1.0
continue
same = d.get((j, i, k), [])
if same:
d[key] = same
continue
# get rid of overlapping intervals
if i <= j and j < i + k: continue
if j <= i and i < j + k: continue
if k > 4 and d[(i, j, k-1)] < 0.5:
d[key] = d[(i, j, k-1)]
continue
segment_j = segs[(j, j+k)]
features = [segment_i.compare_with(segment_j)]
score = c.predict_proba(features)[0][1]
d[key] = score
with timer("Preprocess_segments: 2/2"):
match = {}
def is_overlap(j, k, l=[]):
for i in l:
if i <= j and j < i+k:
return True
if j <= i and i < j+k:
return True
return False
bin_by_i_k = {}
for key in d.keys():
i, j, k = key
l = bin_by_i_k.get((i, k), [])
l.append(key)
bin_by_i_k[(i, k)] = l
# extract non-overlapping matches
for k in range(1, Piece.num_bars + 1):
for i in range(Piece.num_bars - k + 1):
keys_same_k = bin_by_i_k[(i, k)]
result = [x[1] for x in keys_same_k if d[x] >= 0.5]
result.sort(key=lambda j: (-d[(i, j, k)], j))
non_overlap = []
for j in result:
if not is_overlap(j, k, non_overlap): non_overlap.append(j)
match[(i, k)] = non_overlap
segs = {} #TODO
return segs, d, match
def default_scoring_fn(key, Piece, d, match):
i, k = key
freq_w = sum([ d[(i, j, k)] for j in match[key] ]) - 1 # a 'weighted' frequency
k = k-1
#sum_ = -freq_w**2 + (freq_w + k) * Piece.num_bars / 2 + -k**2 if match[key] else 0
#return freq_w * k * k + k
sum_ = -freq_w**2 + (freq_w + k) * Piece.num_bars / 2 + -k**2 if match[key] else 0
return (sum_ * k * k * freq_w + k) / Piece.num_bars
def _default_scoring_fn(key, Piece, d, match):
i, k = key
#freq_w = sum([ d[(i, j, k)] for j in match[key] ]) - 1 # a 'weighted' frequency
#k = k-1
#sum_ = -(freq_w - 0)**2 + (freq_w + k) * Piece.num_bars + -k**2 if match[key] else 0
#return (sum_ * (k-0) * freq_w * k + k) / Piece.num_bars
sum_ = (sum([ d[(i, j, k)] for j in match[key] ]) - 1) * k * k
return sum_
def segmentation(Piece, d, match, scoring_fn=default_scoring_fn, start=0, dur=-1, section_prefix='', depth=0):
if dur == -1:
dur = Piece.num_bars
with timer("Segmentation: 1/3 done"):
score = {k: scoring_fn(k, Piece, d, match) for k in match.keys() if (k[0] >= start and k[0]+k[1] <= start+dur) }
best = sorted(score.keys(), key=lambda x: -score[x]) # order the keys by their score
with timer("Segmentation: 2/3 done"):
# Find set of non-overlapping intervals with maximum total score (weighted interval scheduling)
bin_by_end = {}
for key in score.keys():
i, k = key
l = bin_by_end.get(i+k, [])
l.append(key)
bin_by_end[i+k] = l
M = [0]
intervals = []
for n in range(1, dur + 1):
key = max([k for k in bin_by_end.get(n, [])], key=lambda x: score[x] + M[x[0]])
intervals.append(key)
M.append(score[key] + M[key[0]])
chosen = []
n = 0
while n < len(intervals):
i, k = intervals[-n-1]
chosen.append((i, k))
n += k
chosen = chosen[::-1]
bestscore = [(b, score[b]) for b in best]
chosenscore = [(b, score[b]) for b in chosen]
with timer("Segmentation: 3/3 done"):
labelled_sections = {}
alphabet = 'ABCDEFGHIJKLMNOPQRSTOPWXYZ'
alpha_i = 0
for c1 in chosen:
i, k = c1
if c1 not in labelled_sections:
mkeys = [ (j, k) for j in match[c1] ]
for mk in mkeys:
labelled_sections[mk] = alphabet[alpha_i]
alpha_i += 1
labelled_chosen = [(b, labelled_sections[b]) for b in chosen]
'''
for c1 in chosen:
label = labelled_sections[c1]
start, dur = c1
segmentation(Piece, d, match, default_scoring_fn, start, dur, section_prefix=label, depth+1)
'''
return chosenscore, chosen, score, labelled_sections, bestscore
if __name__ == '__main__':
c = fetch_classifier()
musicpiece = data.piece(sys.argv[1])
if len(sys.argv) == 5: # midi-file, min_bars, start_bar_index, end_bar_index
musicpiece = musicpiece.segment_by_bars(int(sys.argv[3]), int(sys.argv[4]))
d = preprocess_segments(musicpiece, c)
if len(sys.argv) == 6: # midi-file, b00, b01, b10, b11
b00, b01, b10, b11 = [ int(n) for n in sys.argv[2:6] ]
def compare_bars(musicpiece, c, b00, b01, b10, b11):
one = musicpiece.segment_by_bars(b00, b01)
two = musicpiece.segment_by_bars(b10, b11)
features = [one.compare_with(two)]
similarity_score = c.predict_proba(features)[0][1] # get similarity_score
print "SIMPROB:", similarity_score
headers = [ 'Feature' + str(i) for i in range(len(features[0])) ]
features.insert(0, headers)
from tabulate import tabulate
print "FEATURES:\n", tabulate(features)
compare_bars(musicpiece, c, b00, b01, b10, b11)