|
| 1 | +''' |
| 2 | +analyze.py |
| 3 | +
|
| 4 | +This file sets up infrastructure for the similarity measure using a classifier |
| 5 | +that compares two music segments and gives a score between 0 and 1 |
| 6 | +
|
| 7 | +''' |
| 8 | + |
| 9 | +from sklearn import datasets, neighbors, linear_model, svm |
| 10 | +from sklearn.metrics import confusion_matrix |
| 11 | +import numpy as np |
| 12 | +import random |
| 13 | +from similar_sections import ss |
| 14 | +import sys |
| 15 | + |
| 16 | +class train_set(object): |
| 17 | + def __init__(self, data, target): |
| 18 | + self.data = data |
| 19 | + self.target = target |
| 20 | + |
| 21 | +def generate(): |
| 22 | + gen = ss.generate_targets_subset() |
| 23 | + random.shuffle(gen) |
| 24 | + target = np.array([ v[2] for v in gen ]) |
| 25 | + data = np.array([ f[0].compare_with(f[1]) for f in gen ]) |
| 26 | + return train_set(data, target) |
| 27 | + |
| 28 | +def train_classifier(sdata, classifier=None): |
| 29 | + digits = sdata |
| 30 | + |
| 31 | + X_digits = digits.data |
| 32 | + y_digits = digits.target |
| 33 | + |
| 34 | + n_samples = len(X_digits) |
| 35 | + |
| 36 | + # data |
| 37 | + X_train = X_digits[:] |
| 38 | + y_train = y_digits[:] |
| 39 | + |
| 40 | + if not classifier: |
| 41 | + #classifier = svm.NuSVC(nu=0.01, probability=True) |
| 42 | + #classifier = linear_model.RidgeClassifierCV() |
| 43 | + classifier = linear_model.LogisticRegression(C=3.0) |
| 44 | + |
| 45 | + classifier_fit = classifier.fit(X_train, y_train) |
| 46 | + return classifier_fit |
| 47 | + |
| 48 | + |
| 49 | +def test(sdata, classifier=None, verbose=True, verboseverbose=False): |
| 50 | + digits = sdata |
| 51 | + |
| 52 | + X_digits = digits.data |
| 53 | + y_digits = digits.target |
| 54 | + |
| 55 | + n_samples = len(X_digits) |
| 56 | + |
| 57 | + # data |
| 58 | + X_train = X_digits[:.85 * n_samples] |
| 59 | + y_train = y_digits[:.85 * n_samples] |
| 60 | + |
| 61 | + # truths/target |
| 62 | + X_test = X_digits[.85 * n_samples:] |
| 63 | + y_test = y_digits[.85 * n_samples:] |
| 64 | + |
| 65 | + if not classifier: |
| 66 | + classifier = linear_model.RidgeClassifierCV() |
| 67 | + |
| 68 | + classifier_fit = classifier.fit(X_train, y_train) |
| 69 | + |
| 70 | + pred = classifier_fit.predict(X_test) |
| 71 | + score = classifier_fit.score(X_test, y_test) |
| 72 | + |
| 73 | + if verboseverbose: |
| 74 | + # print the matrix of feature scores |
| 75 | + big_matrix = np.array([ np.hstack((X_test[i], y_test[i])) for i in xrange(len(X_test)) ]) |
| 76 | + print ['Tr0Rhyt','Tr0TopL','Tr1Rhyt','Tr1TopL','Truth'] |
| 77 | + print big_matrix |
| 78 | + if verbose: |
| 79 | + print 'TRUTH:', y_test |
| 80 | + print 'PREDN:', pred |
| 81 | + print ('Classifier score: %f' % score) |
| 82 | + |
| 83 | + return score, pred, y_test |
| 84 | + |
| 85 | +def evaluate_n(n, sdata, classifier): |
| 86 | + avg_score = 0.0 |
| 87 | + pred_overall, y_test_overall = np.array([]), np.array([]) |
| 88 | + for i in xrange(n): |
| 89 | + score, pred, y_test = test(sdata, classifier, verbose=False if n > 1 else True) |
| 90 | + avg_score += score / n |
| 91 | + pred_overall = np.hstack((pred_overall, pred)) |
| 92 | + y_test_overall = np.hstack((y_test_overall, y_test)) |
| 93 | + |
| 94 | + sys.stdout.write("\r(Progress: %d/%d)" % (i, n)) |
| 95 | + sys.stdout.flush() |
| 96 | + else: |
| 97 | + sys.stdout.write("\r") |
| 98 | + sys.stdout.flush() |
| 99 | + |
| 100 | + print "---- Num of Repetitions:", n |
| 101 | + print "---- Average Score:", avg_score |
| 102 | + np.set_printoptions(linewidth=999999) |
| 103 | + print confusion_matrix(y_test_overall, pred_overall) |
| 104 | + |
| 105 | +if __name__ == '__main__': |
| 106 | + |
| 107 | + # three classifiers to choose from omgz |
| 108 | + svm = svm.NuSVC(nu=0.02) |
| 109 | + ridge = linear_model.RidgeClassifierCV() |
| 110 | + knn = neighbors.KNeighborsClassifier() |
| 111 | + lr = linear_model.LogisticRegression(C=10.0) |
| 112 | + |
| 113 | + n = 40 |
| 114 | + |
| 115 | + if len(sys.argv) == 2: |
| 116 | + n = int(sys.argv[1]) |
| 117 | + |
| 118 | + evaluate_n(n, generate(), lr) |
0 commit comments