-
Notifications
You must be signed in to change notification settings - Fork 384
/
Copy pathridge_utils.py
318 lines (264 loc) · 12.1 KB
/
ridge_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import logging
import numpy as np
from sklearn.linear_model import Ridge
import time
def create_ridge_model_sklearn(
lambda_value, n_samples, fit_intercept=True, standardize=True
):
"""Create a Ridge regression model using scikit-learn.
Args:
lambda_value: Regularization parameter (lambda) from glmnet
n_samples: Number of samples (needed for proper scaling)
fit_intercept: Whether to fit the intercept
standardize: Whether to standardize the input features
Returns:
A configured sklearn Ridge model that behaves like glmnet
"""
# Create a wrapper class that matches glmnet's behavior
class GlmnetLikeRidge:
def __init__(self):
self.logger = logging.getLogger(__name__)
self.lambda_value = lambda_value # Use raw lambda value
self.fit_intercept = fit_intercept
self.standardize = standardize
self.feature_means = None
self.feature_stds = None
self.y_mean = None
self.coef_ = None
self.intercept_ = 0.0
def mysd(self, y):
"""R-like standard deviation"""
return np.sqrt(np.sum((y - np.mean(y)) ** 2) / len(y))
def fit(self, X, y):
X = np.asarray(X)
y = np.asarray(y)
# Debug prints matching R
self.logger.debug("Lambda calculation debug:")
self.logger.debug(f"x_means: {np.mean(np.abs(X))}")
x_sds = np.apply_along_axis(self.mysd, 0, X)
self.logger.debug(f"x_sds mean: {np.mean(x_sds)}")
# Center and scale like R's glmnet
if self.standardize:
self.feature_means = np.mean(X, axis=0)
self.feature_stds = np.apply_along_axis(self.mysd, 0, X)
self.feature_stds[self.feature_stds == 0] = 1.0
X_scaled = (X - self.feature_means) / self.feature_stds
else:
X_scaled = X
self.feature_means = np.zeros(X.shape[1])
self.feature_stds = np.ones(X.shape[1])
if self.fit_intercept:
self.y_mean = np.mean(y)
y_centered = y - self.y_mean
else:
y_centered = y
self.y_mean = 0.0
self.logger.debug(f"sx mean: {np.mean(np.abs(X_scaled))}")
self.logger.debug(f"sy mean: {np.mean(np.abs(y_centered))}")
self.logger.debug(f"lambda: {self.lambda_value}")
# Fit model using raw lambda (not scaled)
model = Ridge(
alpha=self.lambda_value,
fit_intercept=False, # We handle centering manually
solver="cholesky",
)
model.fit(X_scaled, y_centered)
# Transform coefficients back to original scale
if self.standardize:
self.coef_ = model.coef_ / self.feature_stds
else:
self.coef_ = model.coef_
if self.fit_intercept:
self.intercept_ = self.y_mean - np.dot(self.feature_means, self.coef_)
self.logger.debug(
f"Coefficients range: [{np.min(self.coef_):.6f}, {np.max(self.coef_):.6f}]"
)
self.logger.debug(f"Intercept: {self.intercept_:.6f}")
return self
def predict(self, X):
if self.coef_ is None:
raise ValueError("Model must be fitted before making predictions")
# Direct prediction using coefficients and intercept
return np.dot(X, self.coef_) + self.intercept_
return GlmnetLikeRidge()
def create_ridge_model_rpy2(
lambda_value, n_samples, fit_intercept=True, standardize=True, **kwargs
):
"""Create a Ridge regression model using rpy2 to access glmnet.
Args:
lambda_value: Regularization parameter
n_samples: Number of samples (not directly used, but kept for API consistency)
fit_intercept: Whether to fit the intercept
standardize: Whether to standardize the input features
**kwargs: Additional arguments to pass to glmnet
Returns:
A Ridge regression model using rpy2 to access glmnet.
"""
try:
import rpy2.robjects as ro
from rpy2.robjects import numpy2ri
from rpy2.robjects.packages import importr
from rpy2.robjects.conversion import localconverter
# Import glmnet only once per Python session
global glmnet_imported
if "glmnet_imported" not in globals():
try:
importr("glmnet")
glmnet_imported = True
except Exception as e:
logging.warning(f"Failed to import glmnet: {e}")
logging.warning("Falling back to sklearn implementation")
return create_ridge_model_sklearn(
lambda_value, n_samples, fit_intercept, standardize
)
except ImportError:
logging.warning("rpy2 not available, using sklearn implementation")
return create_ridge_model_sklearn(
lambda_value, n_samples, fit_intercept, standardize
)
class GlmnetRidgeWrapper:
def __init__(self):
self.lambda_value = lambda_value
self.fit_intercept = fit_intercept
self.standardize = standardize
self.kwargs = kwargs
self.fitted_model = None
self.coef_ = None
self.intercept_ = 0.0
self.logger = logging.getLogger(__name__)
# Cache for performance
self._X_matrix_cache = {}
self._prediction_cache = {}
def fit(self, X, y):
# Ensure numpy arrays
X = np.asarray(X)
y = np.asarray(y)
self.logger.debug("\n=== Model Fitting Debug ===")
self.logger.debug(f"Input shapes - X: {X.shape}, y: {y.shape}")
self.logger.debug(
f"X stats - min: {X.min():.6f}, max: {X.max():.6f}, mean: {X.mean():.6f}"
)
self.logger.debug(
f"y stats - min: {y.min():.6f}, max: {y.max():.6f}, mean: {y.mean():.6f}"
)
self.logger.debug(f"lambda_value: {self.lambda_value}")
fit_intercept_r = "TRUE" if self.fit_intercept else "FALSE"
standardize_r = "TRUE" if self.standardize else "FALSE"
# Collect optional parameters
optional_params = []
# Generate key for caching
cache_key = (
hash(X.tobytes()),
hash(y.tobytes()),
self.lambda_value,
self.fit_intercept,
self.standardize,
)
# Convert Python objects to R
with localconverter(ro.default_converter + numpy2ri.converter):
# Pass the data to R environment
ro.r.assign("X_r", X)
ro.r.assign("y_r", y)
ro.r.assign("lambda_value", self.lambda_value)
# Extract optional parameters
lower_limits = kwargs.get("lower_limits", None)
upper_limits = kwargs.get("upper_limits", None)
if lower_limits is not None:
ro.r.assign("lower_limits_r", lower_limits)
optional_params.append("lower.limits = lower_limits_r")
if upper_limits is not None:
ro.r.assign("upper_limits_r", upper_limits)
optional_params.append("upper.limits = upper_limits_r")
# Add any additional parameters
for k, v in self.kwargs.items():
if v is not None:
k_r = k.replace("_", ".")
ro.r.assign(f"{k}_param", v)
optional_params.append(f"{k_r} = {k}_param")
# Join optional parameters
optional_str = ", ".join(optional_params)
if optional_str:
optional_str = ", " + optional_str
# Fit the model using direct R code
r_code = f"""
# Use global assignment operator to ensure objects persist
r_model <<- glmnet(
x = X_r,
y = y_r,
family = "gaussian",
alpha = 0, # 0 for ridge regression
lambda = lambda_value,
standardize = {standardize_r},
intercept = {fit_intercept_r},
type.measure = "mse"{optional_str}
)
coef_values <<- as.numeric(coef(r_model, s = lambda_value))
"""
# Execute R code for model fitting
ro.r(r_code)
# Get the model and coefficients from R
self.fitted_model = ro.r["r_model"]
coef_array = np.array(ro.r["coef_values"])
# Store X matrix for future predictions
self._X_matrix_cache[cache_key] = X
# After getting coefficients
self.logger.debug("\n=== Coefficient Debug ===")
self.logger.debug(f"Raw coefficients shape: {coef_array.shape}")
self.logger.debug(
f"Raw coefficients range: [{coef_array.min():.6f}, {coef_array.max():.6f}]"
)
# First coefficient is intercept, rest are feature coefficients
if self.fit_intercept:
self.intercept_ = float(coef_array[0])
self.coef_ = coef_array[1:]
else:
self.intercept_ = 0.0
self.coef_ = coef_array[1:]
self.logger.debug(f"Final intercept: {self.intercept_:.6f}")
self.logger.debug(
f"Final coefficients range: [{self.coef_.min():.6f}, {self.coef_.max():.6f}]"
)
return self
def predict(self, X):
X = np.asarray(X)
self.logger.debug("\n=== Prediction Input ===")
self.logger.debug(f"X shape: {X.shape}")
self.logger.debug(f"X range: [{X.min():.6f}, {X.max():.6f}]")
self.logger.debug(f"X mean: {X.mean():.6f}")
self.logger.debug(
f"X stats - min: {X.min():.6f}, max: {X.max():.6f}, mean: {X.mean():.6f}"
)
if X.shape[0] < 1000:
predictions = np.dot(X, self.coef_) + self.intercept_
self.logger.debug(f"Using direct computation")
else:
# For larger matrices, use R but check cache first
X_hash = hash(X.tobytes())
if X_hash in self._prediction_cache:
return self._prediction_cache[X_hash]
# Make predictions using R code directly
with localconverter(ro.default_converter + numpy2ri.converter):
# Pass the data to R environment
ro.r.assign("X_new", X)
ro.r.assign("lambda_value", self.lambda_value)
# Make predictions using R code
ro.r(
"""
predictions <<- as.numeric(predict(r_model, newx = X_new, s = lambda_value, type = "response"))
"""
)
# Get predictions from R
predictions = np.array(ro.r["predictions"])
self.logger.debug("\n=== Prediction Output ===")
self.logger.debug(
f"Predictions range: [{predictions.min():.6f}, {predictions.max():.6f}]"
)
self.logger.debug(f"Predictions mean: {predictions.mean():.6f}")
# Cache the predictions
self._prediction_cache[X_hash] = predictions
self.logger.debug(f"Using R computation")
self.logger.debug(
f"Predictions stats - min: {predictions.min():.6f}, max: {predictions.max():.6f}, mean: {predictions.mean():.6f}"
)
return predictions
return GlmnetRidgeWrapper()