Before start, please download and process the data follow the instructions docs/dataset.md. The directory structure of the data is expected to be:
data/
├── animal/
| ├── Hare_male_full_RM/
| └── Wolf_cub_full_RM_2/
└── zju/
├── SMPL_NEUTRAL.pkl
├── CoreView_313/
├── ...
└── CoreView_386/
Before kicking off the training, I recommand you to do a dry-run of the code that can quickly test if everything (data & dependency & multigpu) etc are set up correctly. You certainly don't want to see a failure job after waiting for a few hours. A successful dry-run garentees your program can keep running till the very end.
FASTARGS="max_steps=1 print_every=1 save_every=1 eval_every=1 dataset.resize_factor=0.1 hydra.run.dir=outputs/dryrun"
CUDA_VISIBLE_DEVICES=0,1 python launch.py --config-name=mipnerf_dyn dataset=zju pos_enc=snarf $FASTARGS
"TAVA: Template-free Animatable Volumetric Actors."
The default output directory is:
./outputs/dynamic/<dataset>/<subject_id>/snarf/
. You can check the on-the-fly qualitative evalution results in the folder eval_imgs_otf
and quantitative scores in the val_xxx_metrics_otf.txt
file. There is also a tensorboard log file in this folder for you to check on the loss curves.
# train the ZJU subjects. (full model)
CUDA_VISIBLE_DEVICES=0,1 python launch.py --config-name=mipnerf_dyn \
dataset=zju \
dataset.subject_id=313 \
pos_enc=snarf \
loss_bone_w_mult=1.0 \
loss_bone_offset_mult=0.1
# train the animal subjects. (LBS residual and AO shading are both disabled)
CUDA_VISIBLE_DEVICES=0,1 python launch.py --config-name=mipnerf_dyn \
dataset=animal_hare \
model.shading_mode=null \
pos_enc=snarf \
pos_enc.offset_net_enabled=false \
loss_bone_w_mult=1.0
## train the ZJU subjects. (full model but using NeRF instead of MipNeRF)
CUDA_VISIBLE_DEVICES=0,1 python launch.py --config-name=nerf_dyn \
dataset=zju \
dataset.subject_id=313 \
pos_enc=snarf \
loss_bone_w_mult=1.0 \
loss_bone_offset_mult=0.1 \
model.num_levels=1 model.num_samples_coarse=128
"Neural Articulated Radiance Field, ICCV 2021."
# train the ZJU subjects.
CUDA_VISIBLE_DEVICES=0,1 python launch.py --config-name=mipnerf_dyn \
dataset=zju \
dataset.subject_id=313 \
pos_enc=narf
# train the animal subjects.
CUDA_VISIBLE_DEVICES=0,1 python launch.py --config-name=mipnerf_dyn \
dataset=animal_hare \
model.shading_mode=null \
pos_enc=narf