This repository has been archived by the owner on Jun 1, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmain.py
299 lines (261 loc) · 9.81 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import random
import warnings
from datetime import datetime
from os import path as osp
from time import time as tic
import numpy as np
import torch
from torch import optim
from torch.utils.data import DataLoader
from voxelcnn.checkpoint import Checkpointer
from voxelcnn.criterions import CrossEntropyLoss
from voxelcnn.datasets import Craft3DDataset
from voxelcnn.evaluators import CCA, MTC, Accuracy
from voxelcnn.models import VoxelCNN
from voxelcnn.summary import Summary
from voxelcnn.utils import Section, collate_batches, setup_logger, to_cuda
def global_setup(args):
if args.seed is not None:
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
if not args.cpu_only:
if not torch.cuda.is_available():
warnings.warn("CUDA is not available. Fallback to using CPU only")
args.cpu_only = True
else:
torch.cuda.benchmark = True
def build_data_loaders(args, logger):
data_loaders = {}
for subset in ("train", "val", "test"):
dataset = Craft3DDataset(
args.data_dir,
subset,
max_samples=args.max_samples,
next_steps=10,
logger=logger,
)
data_loaders[subset] = DataLoader(
dataset,
batch_size=args.batch_size,
shuffle=subset == "train",
num_workers=args.num_workers,
pin_memory=not args.cpu_only,
)
return data_loaders
def build_model(args, logger):
model = VoxelCNN()
if not args.cpu_only:
model.cuda()
logger.info("Model architecture:\n" + str(model))
return model
def build_criterion(args):
criterion = CrossEntropyLoss()
if not args.cpu_only:
criterion.cuda()
return criterion
def build_optimizer(args, model):
no_decay = []
decay = []
for name, param in model.named_parameters():
if name.endswith(".bias"):
no_decay.append(param)
else:
decay.append(param)
params = [{"params": no_decay, "weight_decay": 0}, {"params": decay}]
return optim.SGD(
params,
lr=args.lr,
weight_decay=args.weight_decay,
momentum=args.momentum,
nesterov=True,
)
def build_scheduler(args, optimizer):
return optim.lr_scheduler.StepLR(
optimizer, step_size=args.step_size, gamma=args.gamma
)
def build_evaluators(args):
return {
"acc@1": Accuracy(next_steps=1),
"acc@5": Accuracy(next_steps=5),
"acc@10": Accuracy(next_steps=10),
}
def train(
args, epoch, data_loader, model, criterion, optimizer, scheduler, evaluators, logger
):
summary = Summary(logger=logger)
model.train()
timestamp = tic()
for i, (inputs, targets) in enumerate(data_loader):
times = {"data": tic() - timestamp}
if not args.cpu_only:
inputs = to_cuda(inputs)
targets = to_cuda(targets)
outputs = model(inputs)
losses = criterion(outputs, targets)
with torch.no_grad():
metrics = {k: float(v(outputs, targets)) for k, v in evaluators.items()}
optimizer.zero_grad()
losses["overall_loss"].backward()
optimizer.step()
try:
lr = scheduler.get_last_lr()[0]
except Exception:
# For backward compatibility
lr = scheduler.get_lr()[0]
times["time"] = tic() - timestamp
summary.add(times=times, lrs={"lr": lr}, losses=losses, metrics=metrics)
summary.print_current(
prefix=f"[{epoch}/{args.num_epochs}][{i + 1}/{len(data_loader)}]"
)
timestamp = tic()
scheduler.step()
@torch.no_grad()
def evaluate(args, epoch, data_loader, model, evaluators, logger):
summary = Summary(logger=logger)
model.eval()
timestamp = tic()
batch_results = []
for i, (inputs, targets) in enumerate(data_loader):
times = {"data": tic() - timestamp}
if not args.cpu_only:
inputs = to_cuda(inputs)
targets = to_cuda(targets)
outputs = model(inputs)
batch_results.append(
{k: v.step(outputs, targets) for k, v in evaluators.items()}
)
times["time"] = tic() - timestamp
summary.add(times=times)
summary.print_current(
prefix=f"[{epoch}/{args.num_epochs}][{i + 1}/{len(data_loader)}]"
)
timestamp = tic()
results = collate_batches(batch_results)
metrics = {k: float(v.stop(results[k])) for k, v in evaluators.items()}
return metrics
def main(args):
# Set log file name based on current date and time
cur_datetime = datetime.now().strftime("%Y%m%d.%H%M%S")
log_path = osp.join(args.save_dir, f"log.{cur_datetime}.txt")
logger = setup_logger(save_file=log_path)
logger.info(f"Save logs to: {log_path}")
with Section("Global setup", logger=logger):
global_setup(args)
with Section("Building data loaders", logger=logger):
data_loaders = build_data_loaders(args, logger)
with Section("Building model", logger=logger):
model = build_model(args, logger)
with Section("Building criterions, optimizer, scheduler", logger=logger):
criterion = build_criterion(args)
optimizer = build_optimizer(args, model)
scheduler = build_scheduler(args, optimizer)
with Section("Building evaluators", logger=logger):
evaluators = build_evaluators(args)
checkpointer = Checkpointer(args.save_dir)
last_epoch = 0
if args.resume is not None:
with Section(f"Resuming from model: {args.resume}", logger=logger):
last_epoch = checkpointer.resume(
args.resume, model=model, optimizer=optimizer, scheduler=scheduler
)
for epoch in range(last_epoch + 1, args.num_epochs + 1):
with Section(f"Training epoch {epoch}", logger=logger):
train(
args,
epoch,
data_loaders["train"],
model,
criterion,
optimizer,
scheduler,
evaluators,
logger,
)
with Section(f"Validating epoch {epoch}", logger=logger):
# Evaluate on the validation set by the lightweight accuracy metrics
metrics = evaluate(
args, epoch, data_loaders["val"], model, evaluators, logger
)
# Use acc@10 as the key metric to select best model
checkpointer.save(model, optimizer, scheduler, epoch, metrics["acc@10"])
metrics_str = " ".join(f"{k}: {v:.3f}" for k, v in metrics.items())
best_mark = "*" if epoch == checkpointer.best_epoch else ""
logger.info(f"Finish epoch: {epoch} {metrics_str} {best_mark}")
best_epoch = checkpointer.best_epoch
with Section(f"Final test with best model from epoch: {best_epoch}", logger=logger):
# Load the best model and evaluate all the metrics on the test set
checkpointer.load("best", model=model)
metrics = evaluate(
args, best_epoch, data_loaders["test"], model, evaluators, logger
)
# Additional evaluation metrics. Takes quite long time to evaluate
dataset = data_loaders["test"].dataset
params = {
"local_size": dataset.local_size,
"global_size": dataset.global_size,
"history": dataset.history,
}
metrics.update(CCA(**params).evaluate(dataset, model))
metrics.update(MTC(**params).evaluate(dataset, model))
metrics_str = " ".join(f"{k}: {v:.3f}" for k, v in metrics.items())
logger.info(f"Final test from best epoch: {best_epoch}\n{metrics_str}")
if __name__ == "__main__":
work_dir = osp.dirname(osp.abspath(__file__))
parser = argparse.ArgumentParser(
description="Train and evaluate VoxelCNN model on 3D-Craft dataset"
)
# Data
parser.add_argument(
"--data_dir",
type=str,
default=osp.join(work_dir, "data"),
help="Path to the data directory",
)
parser.add_argument("--batch_size", type=int, default=64, help="Batch size")
parser.add_argument(
"--num_workers",
type=int,
default=16,
help="Number of workers for preprocessing",
)
parser.add_argument(
"--max_samples",
type=int,
default=None,
help="When debugging, set this option to limit the number of training samples",
)
# Optimizer
parser.add_argument("--lr", type=float, default=0.1, help="Initial learning rate")
parser.add_argument(
"--weight_decay", type=float, default=0.0001, help="Weight decay"
)
parser.add_argument("--momentum", type=float, default=0.9, help="Momentum")
# Scheduler
parser.add_argument("--step_size", type=int, default=5, help="StepLR step size")
parser.add_argument("--gamma", type=int, default=0.1, help="StepLR gamma")
parser.add_argument("--num_epochs", type=int, default=12, help="Total train epochs")
# Misc
parser.add_argument(
"--save_dir",
type=str,
default=osp.join(work_dir, "logs"),
help="Path to a directory to save log file and checkpoints",
)
parser.add_argument(
"--resume",
type=str,
default=None,
help="'latest' | 'best' | '<epoch number>' | '<path to a checkpoint>'. "
"Default: None, will not resume",
)
parser.add_argument("--cpu_only", action="store_true", help="Only using CPU")
parser.add_argument("--seed", type=int, default=None, help="Random seed")
main(parser.parse_args())