-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
61 lines (44 loc) · 1.5 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import numpy as np
from flask import Flask, request, jsonify, render_template
import pickle
import seaborn as sns
import matplotlib.pyplot as plt
# hide warnings
import warnings
import statsmodels.api as sm
from sklearn.model_selection import train_test_split
from clean_input import create_features, prediction_mapper
app = Flask(__name__)
model = pickle.load(open('model.pkl', 'rb'))
@app.route('/')
def home():
sexList = ['Male', 'Female', 'Infant']
return render_template('index.html', sexList = sexList)
@app.route('/predict',methods=['POST'])
def predict():
'''
For rendering results on HTML GUI
'''
sexList = ['Male', 'Female', 'Infant']
features = [x for x in request.form.values()]
height = features[0]
shucked_weight = features[1]
shell_weight = features[2]
sex = features[3]
features = create_features(height, shucked_weight, shell_weight, sex, model)
prediction = model.predict(features)
# output = round(prediction[0], 2)
# return render_template('index.html', prediction_text='Employee Salary should be $ {}'.format(output))
output = '''
Details Provided - <br/>
Height = {}<br/>
Shucked Weight = {}<br/>
Shell Weight = {}<br/>
Sex = {}<br/>
<br/>
Prediction - <br/>
{}
'''.format(height, shucked_weight, shell_weight, sex, prediction_mapper(prediction))
return render_template('index.html', sexList = sexList, prediction_text=output)
if __name__ == "__main__":
app.run(debug=True)