-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataloader.py
318 lines (260 loc) · 13.4 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import sys
import os
import re
from pathlib import Path
import logging
import argparse
import enum
import pandas as pd
from tqdm import tqdm
import pickle
from PIL import Image
import torch
from torch.utils.data import Dataset, DataLoader
import torchvision
logging.basicConfig(level=logging.INFO) # DEBUG, INFO, WARNING, ERROR, CRITICAL
DATA_PATH = "./data"
PL_ASSETS_PATH = "./lightning_logs"
IMAGE_EXTENSION = ".png"
PRESAVED_IMAGE_FILEPATHS = "image_filepaths.pkl"
DINO_IMAGE_SIZE = 224
PRETRAINING_IMAGE_SIZE = 256
class BreastHistopathologyDataset(Dataset):
""" Dataset used by ResNetModel (and any other baseline models) for IDC classification """
def __init__(self, force_reset=False, image_dim=30):
self.image_dim = image_dim
# Get a list of all image files, across all patients
image_filepaths = list()
presaved_image_filepaths_path = os.path.join(DATA_PATH, PRESAVED_IMAGE_FILEPATHS)
if os.path.exists(presaved_image_filepaths_path) and not force_reset:
# Load from previous run
logging.info(f"Loading list of image file paths from previous run (stored in {presaved_image_filepaths_path})...")
logging.info(" To run from scratch, pass in force_reset=True to BreastHistopathologyDataset()")
with open(presaved_image_filepaths_path, "rb") as file:
image_filepaths = pickle.load(file)
else:
# Get all patient IDs, which are numbers (which we match for via regex)
# Note that each patient has their own subdirectory in `data/`
p = re.compile("^\d+$")
patient_ids = [dir for dir in os.listdir(DATA_PATH) if p.match(dir)]
logging.info(f"Number of patients: {len(patient_ids)}")
# Iterate through all patient subdirectories and get filenames
for patient_id in patient_ids:
patient_dir = os.path.join(DATA_PATH, patient_id)
for root, dirs, files in os.walk(patient_dir):
curr_filepaths = [os.path.join(root, filename) for filename in files]
image_filepaths.extend(curr_filepaths)
# Save for future runs
with open(presaved_image_filepaths_path, "wb") as file:
pickle.dump(image_filepaths, file)
# Extract the label for each image file
image_labels = [0 for _ in range(len(image_filepaths))]
for idx, filename in enumerate(image_filepaths):
# Files are named as <patient_id>_idx..._x..._y..._class<label>.png
# We extract the label from that filename
label = int(filename.replace(IMAGE_EXTENSION, "")[-1])
image_labels[idx] = label
self.dataframe = pd.DataFrame(
list(zip(image_filepaths, image_labels)),
columns=["image_filepath", "label"]
)
def __len__(self):
return len(self.dataframe.index)
def __getitem__(self, idx):
image_filepath = self.dataframe.loc[idx, "image_filepath"]
label = self.dataframe.loc[idx, "label"]
image = Image.open(image_filepath).convert("RGB")
image_transform = torchvision.transforms.Compose([
torchvision.transforms.Resize(size=(self.image_dim, self.image_dim)),
torchvision.transforms.ToTensor(),
# All torchvision models expect the same normalization mean and std
# https://pytorch.org/docs/stable/torchvision/models.html
torchvision.transforms.Normalize(
mean=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225)
),
])
image = image_transform(image)
item = {
"image_path": image_filepath,
"image": image,
"label": label,
}
return item
class DinoBreastHistopathologyDataset(Dataset):
""" Dataset used by DINO models for IDC classification """
def __init__(self, force_reset=False):
# Get a list of all image files, across all patients
image_filepaths = list()
presaved_image_filepaths_path = os.path.join(DATA_PATH, PRESAVED_IMAGE_FILEPATHS)
if os.path.exists(presaved_image_filepaths_path) and not force_reset:
# Load from previous run
logging.info(f"Loading list of image file paths from previous run (stored in {presaved_image_filepaths_path})...")
logging.info(" To run from scratch, pass in force_reset=True to BreastHistopathologyDataset()")
with open(presaved_image_filepaths_path, "rb") as file:
image_filepaths = pickle.load(file)
else:
# Get all patient IDs, which are numbers (which we match for via regex)
# Note that each patient has their own subdirectory in `data/`
p = re.compile("^\d+$")
patient_ids = [dir for dir in os.listdir(DATA_PATH) if p.match(dir)]
logging.info(f"Number of patients: {len(patient_ids)}")
# Iterate through all patient subdirectories and get filenames
for patient_id in patient_ids:
patient_dir = os.path.join(DATA_PATH, patient_id)
for root, dirs, files in os.walk(patient_dir):
curr_filepaths = [os.path.join(root, filename) for filename in files]
image_filepaths.extend(curr_filepaths)
# Save for future runs
with open(presaved_image_filepaths_path, "wb") as file:
pickle.dump(image_filepaths, file)
# Extract the label for each image file
image_labels = [0 for _ in range(len(image_filepaths))]
for idx, filename in enumerate(image_filepaths):
# Files are named as <patient_id>_idx..._x..._y..._class<label>.png
# We extract the label from that filename
label = int(filename.replace(IMAGE_EXTENSION, "")[-1])
image_labels[idx] = label
self.dataframe = pd.DataFrame(
list(zip(image_filepaths, image_labels)),
columns=["image_filepath", "label"]
)
def __len__(self):
return len(self.dataframe.index)
def __getitem__(self, idx):
image_filepath = self.dataframe.loc[idx, "image_filepath"]
label = self.dataframe.loc[idx, "label"]
image = Image.open(image_filepath).convert("RGB")
image_transform = torchvision.transforms.Compose([
# DINO Vision Transformer expects images of size 224 by 224
torchvision.transforms.Resize(size=(DINO_IMAGE_SIZE, DINO_IMAGE_SIZE)),
torchvision.transforms.ToTensor(),
])
image = image_transform(image)
item = {
"image_path": image_filepath,
"image": image,
"label": label,
}
return item
class DinoOriginalBreastHistopathologyDataset(Dataset):
"""
Dataset used for pretraining Vision Transformers using DINO algorithm
Note that this dataset is used for the original images when running
validation during self-supervised learning in pretraining
"""
def __init__(self, force_reset=False):
# Get a list of all image files, across all patients
image_filepaths = list()
presaved_image_filepaths_path = os.path.join(DATA_PATH, PRESAVED_IMAGE_FILEPATHS)
if os.path.exists(presaved_image_filepaths_path) and not force_reset:
# Load from previous run
logging.info(f"Loading list of image file paths from previous run (stored in {presaved_image_filepaths_path})...")
logging.info(" To run from scratch, pass in force_reset=True to BreastHistopathologyDataset()")
with open(presaved_image_filepaths_path, "rb") as file:
image_filepaths = pickle.load(file)
else:
# Get all patient IDs, which are numbers (which we match for via regex)
# Note that each patient has their own subdirectory in `data/`
p = re.compile("^\d+$")
patient_ids = [dir for dir in os.listdir(DATA_PATH) if p.match(dir)]
logging.info(f"Number of patients: {len(patient_ids)}")
# Iterate through all patient subdirectories and get filenames
for patient_id in patient_ids:
patient_dir = os.path.join(DATA_PATH, patient_id)
for root, dirs, files in os.walk(patient_dir):
curr_filepaths = [os.path.join(root, filename) for filename in files]
image_filepaths.extend(curr_filepaths)
# Save for future runs
with open(presaved_image_filepaths_path, "wb") as file:
pickle.dump(image_filepaths, file)
# Extract the label for each image file
image_labels = [0 for _ in range(len(image_filepaths))]
for idx, filename in enumerate(image_filepaths):
# Files are named as <patient_id>_idx..._x..._y..._class<label>.png
# We extract the label from that filename
label = int(filename.replace(IMAGE_EXTENSION, "")[-1])
image_labels[idx] = label
self.dataframe = pd.DataFrame(
list(zip(image_filepaths, image_labels)),
columns=["image_filepath", "label"]
)
def __len__(self):
return len(self.dataframe.index)
def __getitem__(self, idx):
image_filepath = self.dataframe.loc[idx, "image_filepath"]
label = self.dataframe.loc[idx, "label"]
image = Image.open(image_filepath).convert("RGB")
image_transform = torchvision.transforms.Compose([
# DINO Vision Transformer expects images of size 224 by 224
torchvision.transforms.Resize(size=(PRETRAINING_IMAGE_SIZE, PRETRAINING_IMAGE_SIZE)),
torchvision.transforms.ToTensor(),
])
image = image_transform(image)
return image
class DinoPretrainingBreastHistopathologyDataset(Dataset):
"""
Dataset used for pretraining Vision Transformers using DINO algorithm
Note that this dataset transforms the images for self-supervised learning
The DinoOriginalBreastHistopathologyDataset (above) is used for the
original images when running validation during self-supervised learning
in pretraining
"""
def __init__(self, force_reset=False):
# Get a list of all image files, across all patients
image_filepaths = list()
presaved_image_filepaths_path = os.path.join(DATA_PATH, PRESAVED_IMAGE_FILEPATHS)
if os.path.exists(presaved_image_filepaths_path) and not force_reset:
# Load from previous run
logging.info(f"Loading list of image file paths from previous run (stored in {presaved_image_filepaths_path})...")
logging.info(" To run from scratch, pass in force_reset=True to BreastHistopathologyDataset()")
with open(presaved_image_filepaths_path, "rb") as file:
image_filepaths = pickle.load(file)
else:
# Get all patient IDs, which are numbers (which we match for via regex)
# Note that each patient has their own subdirectory in `data/`
p = re.compile("^\d+$")
patient_ids = [dir for dir in os.listdir(DATA_PATH) if p.match(dir)]
logging.info(f"Number of patients: {len(patient_ids)}")
# Iterate through all patient subdirectories and get filenames
for patient_id in patient_ids:
patient_dir = os.path.join(DATA_PATH, patient_id)
for root, dirs, files in os.walk(patient_dir):
curr_filepaths = [os.path.join(root, filename) for filename in files]
image_filepaths.extend(curr_filepaths)
# Save for future runs
with open(presaved_image_filepaths_path, "wb") as file:
pickle.dump(image_filepaths, file)
# Extract the label for each image file
image_labels = [0 for _ in range(len(image_filepaths))]
for idx, filename in enumerate(image_filepaths):
# Files are named as <patient_id>_idx..._x..._y..._class<label>.png
# We extract the label from that filename
label = int(filename.replace(IMAGE_EXTENSION, "")[-1])
image_labels[idx] = label
self.dataframe = pd.DataFrame(
list(zip(image_filepaths, image_labels)),
columns=["image_filepath", "label"]
)
self.transformA = torchvision.transforms.RandomResizedCrop(
(PRETRAINING_IMAGE_SIZE, PRETRAINING_IMAGE_SIZE), scale=(0.5, 1.0))
self.transformB = torchvision.transforms.RandomResizedCrop(
(PRETRAINING_IMAGE_SIZE, PRETRAINING_IMAGE_SIZE))
def __len__(self):
return len(self.dataframe.index)
def __getitem__(self, idx):
image_filepath = self.dataframe.loc[idx, "image_filepath"]
label = self.dataframe.loc[idx, "label"]
image = Image.open(image_filepath).convert("RGB")
image_transform = torchvision.transforms.Compose([
# DINO Vision Transformer expects images of size 224 by 224
torchvision.transforms.Resize(size=(PRETRAINING_IMAGE_SIZE, PRETRAINING_IMAGE_SIZE)),
torchvision.transforms.ToTensor(),
])
original_image = image_transform(image)
# For pretraining
# Given image is passed through two transforms where one is at leas
# half as large as the original image
transformed_imageA = self.transformA(original_image)
transformed_imageB = self.transformB(original_image)
return transformed_imageA, transformed_imageB