-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy path05-sentiment-analysis.Rmd
79 lines (65 loc) · 1.79 KB
/
05-sentiment-analysis.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
title: "Sentiment analysis: Appendix"
author: "Francisco Rowe ([`@fcorowe`](http://twitter.com/fcorowe))"
date: "`r Sys.Date()`"
output: tint::tintHtml
bibliography: skeleton.bib
link-citations: yes
---
```{r setup, include=FALSE}
library(tint)
# handle spatial data
library(sf)
library(spdep)
# manipulate data
library(tidyverse)
# sentiment analysis
library(vader)
# create maps
library(tmap)
# nice colour schemes
library(viridis)
library(viridisLite)
# invalidate cache when the package version changes
knitr::opts_chunk$set(tidy = FALSE, cache.extra = packageVersion('tint'), class.source = "col-source")
options(htmltools.dir.version = FALSE)
```
```{css, echo=FALSE}
.col-source {
background-color: #E5E7E9;
border: 3px #000000;
}
```
```{marginfigure}
[**Back**](04-spatial-econometrics.html) \
```
This notebook contains the code to obtain sentiment analysis scores for a sample of tweets relating to public opinion on migration originated from the United Kingdom during January 1st to December 31st 2019.
# Data
```{r}
df <- read_csv("./data/uk_geo_tweets_01012019_31012019.csv")
head(df)
```
# Compute sentiment scores
```{r, warning=FALSE}
vader_sentiment <- vader_df(df$text)
```
# Output
```{r}
final_df <- cbind(df$tweet_id, df$created_at, df$place_name, df$full_place_name, df$lat, df$long, df$exact_coords, df$place_type, df$country_code, df$username, vader_sentiment) %>%
rename(
tweet_id = "df$tweet_id",
created_at = "df$created_at",
place_name = "df$place_name",
full_place_name = "df$full_place_name",
lat = "df$long",
long = "df$lat",
exact_coords = "df$exact_coords",
place_type = "df$place_type",
country_code = "df$country_code",
username = "df$username"
)
```
# Save
```{r}
write_csv(final_df, "./data/uk-sentiment-data.csv")
```