Skip to content

Commit 12b9e93

Browse files
update
1 parent 20dd143 commit 12b9e93

File tree

1 file changed

+11
-9
lines changed

1 file changed

+11
-9
lines changed

pix2pixHD/README.md

+11-9
Original file line numberDiff line numberDiff line change
@@ -2,24 +2,26 @@
22

33
## Summary
44
![net](https://github.com/SerialLain3170/Line-to-Color/blob/master/pix2pixHD/network.png)
5-
- Coarse-to-fine GeneratorとMulti-scale discriminatorによって多段的に高解像度へ対応
6-
- Instance-level Feature Embeddingでインスタンス毎に違うマッピングを行う
5+
6+
- This model is the update version of pix2pix.
7+
- The authors of this paper can generate high-resolution images by proposing coarse-to-fine generator and multi-scale discriminator.
78

89
## Usage
10+
Execute the command line below and you can pre-train glbal generator.
911
```py
1012
$ python pretrain.py
1113
```
12-
でGlobal Generatorを事前に学習、そして
14+
15+
Execute the command line below and you can train full architectures contained with local enhancer.
1316
```py
1417
$ python train.py
1518
```
16-
でLocal Enhancerも含めて全て学習
1719

1820
## Result
19-
私の環境で生成した例を以下に示す。
21+
Images generated by my development environment is below.
2022
![result](https://github.com/SerialLain3170/Line-to-Color/blob/master/pix2pixHD/visualize_125.png)
2123

22-
- バッチサイズは4
23-
- 最適化手法はAdam(α=0.0002, β1=0.5)
24-
- Multi-Scale Discriminatorによるlossの重みは10
25-
- まだ学習はしっかり出来ていない、というかGlobal Generatorの事前学習どうやってるんだろうか.....
24+
- Batch size: 4
25+
- Using Adam as optimizer
26+
- The weight of adversarial loss is 10.0
27+
- I think this code is not completed because no method which enables global generator to pre-train is described in this paper

0 commit comments

Comments
 (0)