File tree 1 file changed +11
-9
lines changed
1 file changed +11
-9
lines changed Original file line number Diff line number Diff line change 2
2
3
3
## Summary
4
4
![ net] ( https://github.com/SerialLain3170/Line-to-Color/blob/master/pix2pixHD/network.png )
5
- - Coarse-to-fine GeneratorとMulti-scale discriminatorによって多段的に高解像度へ対応
6
- - Instance-level Feature Embeddingでインスタンス毎に違うマッピングを行う
5
+
6
+ - This model is the update version of pix2pix.
7
+ - The authors of this paper can generate high-resolution images by proposing coarse-to-fine generator and multi-scale discriminator.
7
8
8
9
## Usage
10
+ Execute the command line below and you can pre-train glbal generator.
9
11
``` py
10
12
$ python pretrain.py
11
13
```
12
- でGlobal Generatorを事前に学習、そして
14
+
15
+ Execute the command line below and you can train full architectures contained with local enhancer.
13
16
``` py
14
17
$ python train.py
15
18
```
16
- でLocal Enhancerも含めて全て学習
17
19
18
20
## Result
19
- 私の環境で生成した例を以下に示す。
21
+ Images generated by my development environment is below.
20
22
![ result] ( https://github.com/SerialLain3170/Line-to-Color/blob/master/pix2pixHD/visualize_125.png )
21
23
22
- - バッチサイズは4
23
- - 最適化手法はAdam(α=0.0002, β1=0.5)
24
- - Multi-Scale Discriminatorによるlossの重みは10
25
- - まだ学習はしっかり出来ていない、というかGlobal Generatorの事前学習どうやってるんだろうか.....
24
+ - Batch size: 4
25
+ - Using Adam as optimizer
26
+ - The weight of adversarial loss is 10.0
27
+ - I think this code is not completed because no method which enables global generator to pre-train is described in this paper
You can’t perform that action at this time.
0 commit comments