-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathvertex_ai.dart
330 lines (284 loc) · 10.9 KB
/
vertex_ai.dart
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
// Copyright 2024 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// ignore_for_file: avoid_print, unused_local_variable
import 'dart:io';
import 'package:firebase_core/firebase_core.dart';
import 'package:firebase_vertexai/firebase_vertexai.dart';
import 'package:firebase_snippets_app/snippets/snippet_base.dart';
class VertexAISnippets extends DocSnippet {
late final GenerativeModel model;
@override
void runAll() {
initializeModel();
configureModel();
safetySetting();
multiSafetySetting();
textGenTextOnlyPromptStream();
textGenTextOnlyPrompt();
textGenMultimodalOneImagePromptStream();
textGenMultimodalOneImagePrompt();
textGenMultiModalMultiImagePromptStreaming();
textGenMultiModalMultiImagePrompt();
textGenMultiModalVideoPromptStreaming();
textGenMultiModalVideoPrompt();
countTokensText();
countTokensTextImage();
chatStream();
chat();
setSystemInstructions();
}
void initializeModel() async {
// [START initialize_model]
// Initialize FirebaseApp
await Firebase.initializeApp();
// Initialize the {{vertexai}} service and the generative model
// Specify a model that supports your use case
// Gemini 1.5 models are versatile and can be used with all API capabilities
final model = FirebaseVertexAI.instance
.generativeModel(model: 'gemini-1.5-flash');
// [END initialize_model]
}
void configureModel() {
// [START configure_model]
// ...
final generationConfig = GenerationConfig(
maxOutputTokens: 200,
stopSequences: ["red"],
temperature: 0.9,
topP: 0.1,
topK: 16,
);
final model = FirebaseVertexAI.instance.generativeModel(
model: 'gemini-1.5-flash',
generationConfig: generationConfig,
);
// ...
// [END configure_model]
}
void safetySetting() {
// [START safety_setting]
// ...
final safetySettings = [
SafetySetting(HarmCategory.harassment, HarmBlockThreshold.high)
];
final model = FirebaseVertexAI.instance.generativeModel(
model: 'gemini-1.5-flash',
safetySettings: safetySettings,
);
// ...
// [END safety_setting]
}
void multiSafetySetting() {
// [START multi_safety_setting]
// ...
final safetySettings = [
SafetySetting(HarmCategory.harassment, HarmBlockThreshold.high),
SafetySetting(HarmCategory.hateSpeech, HarmBlockThreshold.high),
];
final model = FirebaseVertexAI.instance.generativeModel(
model: 'gemini-1.5-flash',
safetySettings: safetySettings,
);
// ...
// [END multi_safety_setting]
}
void textGenTextOnlyPromptStream() async {
// [START text_gen_text_only_prompt_streaming]
// Provide a prompt that contains text
final prompt = [Content.text('Write a story about a magic backpack.')];
// To stream generated text output, call generateContentStream with the text input
final response = model.generateContentStream(prompt);
await for (final chunk in response) {
print(chunk.text);
}
// [END text_gen_text_only_prompt_streaming]
}
void textGenTextOnlyPrompt() async {
// [START text_gen_text_only_prompt]
// Provide a prompt that contains text
final prompt = [Content.text('Write a story about a magic backpack.')];
// To generate text output, call generateContent with the text input
final response = await model.generateContent(prompt);
print(response.text);
// [END text_gen_text_only_prompt]
}
void textGenMultimodalOneImagePromptStream() async {
// [START text_gen_multimodal_one_image_prompt_streaming]
// Provide a text prompt to include with the image
final prompt = TextPart("What's in the picture?");
// Prepare images for input
final image = await File('image0.jpg').readAsBytes();
final imagePart = DataPart('image/jpeg', image);
// To stream generated text output, call generateContentStream with the text and image
final response = await model.generateContentStream([
Content.multi([prompt, imagePart])
]);
await for (final chunk in response) {
print(chunk.text);
}
// [END text_gen_multimodal_one_image_prompt_streaming]
}
void textGenMultimodalOneImagePrompt() async {
// [START text_gen_multimodal_one_image_prompt]
// Provide a text prompt to include with the image
final prompt = TextPart("What's in the picture?");
// Prepare images for input
final image = await File('image0.jpg').readAsBytes();
final imagePart = DataPart('image/jpeg', image);
// To generate text output, call generateContent with the text and image
final response = await model.generateContent([
Content.multi([prompt, imagePart])
]);
print(response.text);
// [END text_gen_multimodal_one_image_prompt]
}
void textGenMultiModalMultiImagePromptStreaming() async {
// [START text_gen_multimodal_multi_image_prompt_streaming]
final (firstImage, secondImage) = await (
File('image0.jpg').readAsBytes(),
File('image1.jpg').readAsBytes()
).wait;
// Provide a text prompt to include with the images
final prompt = TextPart("What's different between these pictures?");
// Prepare images for input
final imageParts = [
DataPart('image/jpeg', firstImage),
DataPart('image/jpeg', secondImage),
];
// To stream generated text output, call generateContentStream with the text and images
final response = model.generateContentStream([
Content.multi([prompt, ...imageParts])
]);
await for (final chunk in response) {
print(chunk.text);
}
// [END text_gen_multimodal_multi_image_prompt_streaming]
}
void textGenMultiModalMultiImagePrompt() async {
// [START text_gen_multimodal_multi_image_prompt]
final (firstImage, secondImage) = await (
File('image0.jpg').readAsBytes(),
File('image1.jpg').readAsBytes()
).wait;
// Provide a text prompt to include with the images
final prompt = TextPart("What's different between these pictures?");
// Prepare images for input
final imageParts = [
DataPart('image/jpeg', firstImage),
DataPart('image/jpeg', secondImage),
];
// To generate text output, call generateContent with the text and images
final response = await model.generateContent([
Content.multi([prompt, ...imageParts])
]);
print(response.text);
// [END text_gen_multimodal_multi_image_prompt]
}
void textGenMultiModalVideoPromptStreaming() async {
// [START text_gen_multimodal_video_prompt_streaming]
// Provide a text prompt to include with the video
final prompt = TextPart("What's in the video?");
// Prepare video for input
final video = await File('video0.mp4').readAsBytes();
// Provide the video as `Data` with the appropriate mimetype
final videoPart = DataPart('video/mp4', video);
// To stream generated text output, call generateContentStream with the text and image
final response = model.generateContentStream([
Content.multi([prompt, videoPart])
]);
await for (final chunk in response) {
print(chunk.text);
}
// [END text_gen_multimodal_video_prompt_streaming]
}
void textGenMultiModalVideoPrompt() async {
// [START text_gen_multimodal_video_prompt]
// Provide a text prompt to include with the video
final prompt = TextPart("What's in the video?");
// Prepare video for input
final video = await File('video0.mp4').readAsBytes();
// Provide the video as `Data` with the appropriate mimetype
final videoPart = DataPart('video/mp4', video);
// To generate text output, call generateContent with the text and images
final response = await model.generateContent([
Content.multi([prompt, videoPart])
]);
print(response.text);
// [END text_gen_multimodal_video_prompt]
}
void countTokensText() async {
// [START count_tokens_text]
// Provide a prompt that contains text
final prompt = [Content.text('Write a story about a magic backpack.')];
// Count tokens and billable characters before calling generateContent
final tokenCount = await model.countTokens(prompt);
print('Token count: ${tokenCount.totalTokens}');
print('Billable characters: ${tokenCount.totalBillableCharacters}');
// To generate text output, call generateContent with the text input
final response = await model.generateContent(prompt);
print(response.text);
// [END count_tokens_text]
}
void countTokensTextImage() async {
// [START count_tokens_text_image]
// Provide a text prompt to include with the image
final prompt = TextPart("What's in the picture?");
// Prepare image for input
final image = await File('image0.jpg').readAsBytes();
final imagePart = DataPart('image/jpeg', image);
// Count tokens and billable characters before calling generateContent
final tokenCount = await model.countTokens([
Content.multi([prompt, imagePart])
]);
print('Token count: ${tokenCount.totalTokens}');
print('Billable characters: ${tokenCount.totalBillableCharacters}');
// To generate text output, call generateContent with the text and image
final response = await model.generateContent([
Content.multi([prompt, imagePart])
]);
print(response.text);
// [END count_tokens_text_image]
}
void chatStream() async {
// [START chat_streaming]
final chat = model.startChat();
// Provide a prompt that contains text
final prompt = Content.text('Write a story about a magic backpack.');
final response = chat.sendMessageStream(prompt);
await for (final chunk in response) {
print(chunk.text);
}
// [END chat_streaming]
}
void chat() async {
// [START chat]
final chat = model.startChat();
// Provide a prompt that contains text
final prompt = Content.text('Write a story about a magic backpack.');
final response = await chat.sendMessage(prompt);
print(response.text);
// [END chat]
}
void setSystemInstructions() async {
// [START system_instructions_text]
await Firebase.initializeApp();
// Initialize the Vertex AI service and the generative model
// Specify a model that supports system instructions, like a Gemini 1.5 model
final model = FirebaseVertexAI.instance.generativeModel(
model: 'gemini-1.5-flash-preview-0514',
systemInstruction: Content.system('You are a cat. Your name is Neko.'),
);
// [END system_instructions_text]
}
}