forked from munashe5/SemanticTreeLSTM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathChildSumTree.py
77 lines (58 loc) · 2.72 KB
/
ChildSumTree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import tensorflow as tf
class ChildSumTreeLSTMCell(tf.contrib.rnn.BasicLSTMCell):
"""LSTM with two state inputs.
This is the model described in section 3.2 of 'Improved Semantic
Representations From Tree-Structured Long Short-Term Memory
Networks' <http://arxiv.org/pdf/1503.00075.pdf>, with recurrent
dropout as described in 'Recurrent Dropout without Memory Loss'
<http://arxiv.org/pdf/1603.05118.pdf>.
"""
def __init__(self, num_units, keep_prob=1.0):
"""Initialize the cell.
Args:
num_units: int, The number of units in the LSTM cell.
keep_prob: Keep probability for recurrent dropout.
"""
super(ChildSumTreeLSTMCell, self).__init__(num_units, state_is_tuple=True, reuse=False)
self._keep_prob = keep_prob
def __call__(self, inputs, state, scope=None):
with tf.variable_scope(scope or type(self).__name__):
super(ChildSumTreeLSTMCell, self).__call__(inputs, state[0])
c_list = []
h_list = []
h_sum = None
for child in state:
c, h = child
c_list.append(c)
h_list.append(h)
if h_sum is None:
h_sum = h
else:
h_sum = tf.add(h_sum, h)
kernel_i, kernel_f, kernel_j, kernel_o = tf.split(value=self._kernel, num_or_size_splits=4, axis=1)
bias_i, bias_f, bias_j, bias_o = tf.split(value=self._bias, num_or_size_splits=4, axis=0)
one = tf.constant(1, dtype=tf.int32)
input_h_sum_concat = tf.concat([inputs, h_sum], 1)
gate_inputs_i = tf.matmul(input_h_sum_concat, kernel_i)
gate_inputs_i = tf.nn.bias_add(gate_inputs_i, bias_i)
gate_inputs_j = tf.matmul(input_h_sum_concat, kernel_j)
gate_inputs_j = tf.nn.bias_add(gate_inputs_j, bias_j)
gate_inputs_o = tf.matmul(input_h_sum_concat, kernel_o)
gate_inputs_o = tf.nn.bias_add(gate_inputs_o, bias_o)
add = tf.add
multiply = tf.multiply
sigmoid = tf.sigmoid
forget_bias_tensor = tf.constant(self._forget_bias, dtype=gate_inputs_i.dtype)
c_f_sum = None
for k in range(len(c_list)):
gate_inputs_f_k = tf.matmul(tf.concat([inputs, h_list[k]], 1), kernel_f)
gate_inputs_f_k = tf.nn.bias_add(gate_inputs_f_k, bias_f)
if c_f_sum is None:
c_f_sum = multiply(sigmoid(add(gate_inputs_f_k, forget_bias_tensor)), c_list[k])
else:
f_k_sig = multiply(sigmoid(add(gate_inputs_f_k, forget_bias_tensor)), c_list[k])
c_f_sum = add(c_f_sum, f_k_sig)
new_c = add(c_f_sum, multiply(sigmoid(gate_inputs_i), self._activation(gate_inputs_j)))
new_h = multiply(self._activation(new_c), sigmoid(gate_inputs_o))
new_state = tf.contrib.rnn.LSTMStateTuple(new_c, new_h)
return new_h, new_state