-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_s3.py
215 lines (183 loc) · 6.44 KB
/
run_s3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import asyncio
import json
import random
from dria import DriaDataset, DatasetGenerator, Model, Dria
from pipeline import SimpleQuery, ParallelQuery, MultiTurnQuery
from pipeline.s3_queries.multiturn.task import Function
import logging
import os
from dotenv import load_dotenv
load_dotenv()
logging.basicConfig(
level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s"
)
async def generate_simple_queries(run_id):
"""Generate Simple Queries"""
dataset = DriaDataset(
f"simple_queries_{run_id}",
description="function dataset",
schema=SimpleQuery.OutputSchema,
)
generator = DatasetGenerator(dataset)
with open(f"pipeline/data/{run_id}/functions.json", "r") as f:
function_inputs = json.load(f)
instructions = []
for inp in function_inputs:
for func in inp["functions"]:
instructions.append(
{
"function_schema": func["function"],
"num_queries": 2,
"domain": inp["domain"],
"subdomain": inp["subdomain"],
"scenario": inp["scenario"],
}
)
await generator.generate(
instructions=instructions,
singletons=SimpleQuery,
models=[
Model.LLAMA_3_1_405B_OR,
Model.QWEN2_5_CODER_32B_OR,
Model.GEMINI_15_PRO,
Model.GEMINI_15_FLASH,
Model.GEMINI_20_FLASH,
Model.DEEPSEEK_R1_70B,
Model.DEEPSEEK_R1_32B,
Model.LLAMA_3_3_70B_OR,
Model.ANTHROPIC_SONNET_3_5_OR,
],
)
dataset.to_json(filepath=f"pipeline/data/{run_id}/simple_queries.json")
async def generate_parallel_queries(run_id):
"""Generate Parallel Functions"""
dataset = DriaDataset(
f"__parallel_queries_{run_id}",
description="function dataset",
schema=ParallelQuery.OutputSchema,
)
generator = DatasetGenerator(dataset)
with open(f"pipeline/data/{run_id}/functions.json", "r") as f:
function_inputs = json.load(f)
instructions = []
for inp in function_inputs:
for func in inp["functions"]:
instructions.append(
{
"function_schema": func["function"],
"num_queries": 2,
"domain": inp["domain"],
"subdomain": inp["subdomain"],
"scenario": inp["scenario"],
}
)
await generator.generate(
instructions=instructions,
singletons=ParallelQuery,
models=[
Model.LARGE,
Model.QWEN2_5_CODER_32B_OR,
Model.GEMINI_15_PRO,
Model.GEMINI_20_FLASH,
],
)
dataset.to_json(filepath=f"pipeline/data/{run_id}/parallel_queries.json")
async def generate_multiple_queries(run_id):
"""Generate Functions"""
with open(f"pipeline/data/{run_id}/functions.json", "r") as f:
function_inputs = json.load(f)
func_map = {}
for idx, inp in enumerate(function_inputs):
for func in inp["functions"]:
if random.random() > 0.5:
# add 2 functions
others = [
f["function"]
for f in inp["functions"]
if f["function"] != func["function"]
]
try:
distractors = random.sample(others, 2)
except:
distractors = others
else:
# add 3 functions
others = [
f["function"]
for f in inp["functions"]
if f["function"] != func["function"]
]
if len(others) >= 3:
distractors = random.sample(others, 3)
elif len(others) == 2:
distractors = random.sample(others, 2)
else:
distractors = others
if random.random() > 0.5:
# add outer elements
r = list(range(len(function_inputs)))
r.remove(idx)
distractors.append(
random.choice(function_inputs[random.choice(r)]["functions"])[
"function"
]
)
func_map[func["function"]] = distractors
with open(f"pipeline/data/{run_id}/simple_queries.json", "r") as f:
simple_queries = json.load(f)
samples = random.sample(simple_queries, 10000)
for sample in samples:
distractors = func_map[sample["function_schema"]]
sample["function_schemas"] = [sample["function_schema"]] + distractors
del sample["function_schema"]
with open(f"pipeline/data/{run_id}/multiple_queries.json", "w") as f:
f.write(json.dumps(samples))
async def generate_multi_turn_queries(run_id):
"""Generate Functions"""
dataset = DriaDataset(
f"multi_turn_queries_{run_id}",
description="function dataset",
schema=MultiTurnQuery.OutputSchema,
)
generator = DatasetGenerator(dataset)
with open(f"pipeline/data/{run_id}/functions.json", "r") as f:
function_inputs = json.load(f)
instructions = []
for inp in function_inputs:
function_schemas = []
for func in inp["functions"]:
try:
Function(**func)
function_schemas.append(func)
except:
pass
instructions.append(
{
"function_schemas": function_schemas,
"domain": inp["domain"],
"subdomain": inp["subdomain"],
"scenario": inp["scenario"],
}
)
await generator.generate(
instructions=instructions,
singletons=MultiTurnQuery,
models=[
Model.LLAMA3_3_70B,
Model.QWEN_QWQ,
Model.DEEPSEEK_R1_32B,
Model.DEEPSEEK_R1_70B,
Model.ANTHROPIC_SONNET_3_5_OR,
],
)
dataset.to_json(filepath=f"pipeline/data/{run_id}/multi_turn_queries.json")
async def main():
with open("run_id", "r") as run_id:
run_id = run_id.read()
logging.info(f"Run ID: {run_id}")
await generate_simple_queries(run_id)
await generate_parallel_queries(run_id)
await generate_multiple_queries(run_id)
await generate_multi_turn_queries(run_id)
logging.info("Generated Queries")
asyncio.run(main())