|
1 | 1 | package com.fishercoder.solutions; |
2 | 2 |
|
| 3 | +/** |
| 4 | + * 81. Search in Rotated Sorted Array II |
| 5 | + * <p> |
| 6 | + * There is an integer array nums sorted in non-decreasing order (not necessarily with distinct values). |
| 7 | + * Before being passed to your function, nums is rotated at an unknown pivot index k (0 <= k < nums.length) such that the resulting array is |
| 8 | + * [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]] (0-indexed). For example, [0,1,2,4,4,4,5,6,6,7] might be rotated at pivot index 5 and become [4,5,6,6,7,0,1,2,4,4]. |
| 9 | + * Given the array nums after the rotation and an integer target, return true if target is in nums, or false if it is not in nums. |
| 10 | + * You must decrease the overall operation steps as much as possible. |
| 11 | + * <p> |
| 12 | + * Example 1: |
| 13 | + * Input: nums = [2,5,6,0,0,1,2], target = 0 |
| 14 | + * Output: true |
| 15 | + * <p> |
| 16 | + * Example 2: |
| 17 | + * Input: nums = [2,5,6,0,0,1,2], target = 3 |
| 18 | + * Output: false |
| 19 | + * <p> |
| 20 | + * Constraints: |
| 21 | + * 1 <= nums.length <= 5000 |
| 22 | + * -104 <= nums[i] <= 104 |
| 23 | + * nums is guaranteed to be rotated at some pivot. |
| 24 | + * -104 <= target <= 104 |
| 25 | + * Follow up: This problem is similar to Search in Rotated Sorted Array, but nums may contain duplicates. Would this affect the runtime complexity? How and why? |
| 26 | + */ |
3 | 27 | public class _81 { |
4 | | - |
5 | 28 | public static class Solution1 { |
6 | 29 | public boolean search(int[] nums, int target) { |
7 | | - int start = 0; |
8 | | - int end = nums.length - 1; |
| 30 | + int left = 0; |
| 31 | + int right = nums.length - 1; |
9 | 32 |
|
10 | | - //check each num so we will check start == end |
| 33 | + //check each num so we will check left == right |
11 | 34 | //We always get a sorted part and a half part |
12 | 35 | //we can check sorted part to decide where to go next |
13 | | - while (start <= end) { |
14 | | - int mid = start + (end - start) / 2; |
| 36 | + while (left <= right) { |
| 37 | + int mid = left + (right - left) / 2; |
15 | 38 | if (nums[mid] == target) { |
16 | 39 | return true; |
17 | 40 | } |
18 | 41 |
|
19 | | - //if left part is sorted |
20 | | - if (nums[start] < nums[mid]) { |
21 | | - if (target < nums[start] || target > nums[mid]) { |
| 42 | + if (nums[left] < nums[mid]) { |
| 43 | + //if left part is sorted |
| 44 | + if (target < nums[left] || target > nums[mid]) { |
22 | 45 | //target is in rotated part |
23 | | - start = mid + 1; |
| 46 | + left = mid + 1; |
24 | 47 | } else { |
25 | | - end = mid - 1; |
| 48 | + right = mid - 1; |
26 | 49 | } |
27 | | - } else if (nums[start] > nums[mid]) { |
28 | | - //right part is rotated |
29 | | - |
30 | | - //target is in rotated part |
31 | | - if (target < nums[mid] || target > nums[end]) { |
32 | | - end = mid - 1; |
| 50 | + } else if (nums[left] > nums[mid]) { |
| 51 | + //right part is sorted |
| 52 | + if (target < nums[mid] || target > nums[right]) { |
| 53 | + //target is in rotated part |
| 54 | + right = mid - 1; |
33 | 55 | } else { |
34 | | - start = mid + 1; |
| 56 | + left = mid + 1; |
35 | 57 | } |
36 | 58 | } else { |
37 | | - //duplicates, we know nums[mid] != target, so nums[start] != target |
| 59 | + //duplicates, we know nums[mid] != target, so nums[left] != target |
38 | 60 | //based on current information, we can only move left pointer to skip one cell |
39 | 61 | //thus in the worst case, we would have target: 2, and array like 11111111, then |
40 | 62 | //the running time would be O(n) |
41 | | - start++; |
| 63 | + left++; |
42 | 64 | } |
43 | 65 | } |
44 | 66 | return false; |
|
0 commit comments