Skip to content

Commit 6f14379

Browse files
refactor 546
1 parent 44fa387 commit 6f14379

File tree

1 file changed

+21
-7
lines changed
  • src/main/java/com/fishercoder/solutions

1 file changed

+21
-7
lines changed

src/main/java/com/fishercoder/solutions/_546.java

+21-7
Original file line numberDiff line numberDiff line change
@@ -4,9 +4,9 @@
44
* 546. Remove Boxes
55
*
66
* Given several boxes with different colors represented by different positive numbers.
7-
You may experience several rounds to remove boxes until there is no box left.
8-
Each time you can choose some continuous boxes with the same color (composed of k boxes, k >= 1), remove them and get k*k points.
9-
Find the maximum points you can get.
7+
* You may experience several rounds to remove boxes until there is no box left.
8+
* Each time you can choose some continuous boxes with the same color (composed of k boxes, k >= 1), remove them and get k*k points.
9+
* Find the maximum points you can get.
1010
1111
Example 1:
1212
Input:
@@ -22,25 +22,39 @@ Each time you can choose some continuous boxes with the same color (composed of
2222
----> [1, 1] (3*3=9 points)
2323
----> [] (2*2=4 points)
2424
Note: The number of boxes n would not exceed 100.
25+
2526
*/
27+
2628
public class _546 {
27-
/**credit: https://leetcode.com/articles/remove-boxes/#approach-2-using-dp-with-memorizationaccepted*/
29+
/**
30+
* credit: https://leetcode.com/articles/remove-boxes/#approach-2-using-dp-with-memorizationaccepted
31+
*
32+
* For an entry in dp[l][r][k], l represents the starting index of the subarray,
33+
* r represents the ending index of the subarray
34+
* and k represents the number of elements similar to the r​th element
35+
* following it which can be combined to obtain the point information to be stored in dp[l][r][k].
36+
*/
2837
public int removeBoxes(int[] boxes) {
2938
int[][][] dp = new int[100][100][100];
3039
return calculatePoints(boxes, dp, 0, boxes.length - 1, 0);
3140
}
3241

3342
public int calculatePoints(int[] boxes, int[][][] dp, int l, int r, int k) {
34-
if (l > r) return 0;
35-
if (dp[l][r][k] != 0) return dp[l][r][k];
43+
if (l > r) {
44+
return 0;
45+
}
46+
if (dp[l][r][k] != 0) {
47+
return dp[l][r][k];
48+
}
3649
while (r > l && boxes[r] == boxes[r - 1]) {
3750
r--;
3851
k++;
3952
}
4053
dp[l][r][k] = calculatePoints(boxes, dp, l, r - 1, 0) + (k + 1) * (k + 1);
4154
for (int i = l; i < r; i++) {
4255
if (boxes[i] == boxes[r]) {
43-
dp[l][r][k] = Math.max(dp[l][r][k], calculatePoints(boxes, dp, l, i, k + 1) + calculatePoints(boxes, dp, i + 1, r - 1, 0));
56+
dp[l][r][k] = Math.max(dp[l][r][k],
57+
calculatePoints(boxes, dp, l, i, k + 1) + calculatePoints(boxes, dp, i + 1, r - 1, 0));
4458
}
4559
}
4660
return dp[l][r][k];

0 commit comments

Comments
 (0)