-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWebApp.py
54 lines (44 loc) · 2.16 KB
/
WebApp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import streamlit as st
import pickle
# Load preprocessed data and similarity matrix
newdf = pickle.load(open('artifacts/mooc_list.pkl', 'rb'))
similarity = pickle.load(open('artifacts/similarity.pkl', 'rb'))
# Function to recommend similar courses
def recommend(mooc_title):
index = newdf[newdf['title'].str.lower() == mooc_title.lower()].index[0]
distances = sorted(enumerate(similarity[index]), reverse=True, key=lambda x: x[1])
similar_courses = [newdf.iloc[i[0]] for i in distances[1:8]]
return similar_courses
# Read the contents of the CSS file
with open('design.css', 'r') as css_file:
css_code = css_file.read()
# Streamlit UI
st.set_page_config(layout="wide")
st.title('Open Online Course Recommender')
mooc_list = newdf['title'].tolist()
selected_mooc = st.selectbox('Type or select a course to get a recommendation', mooc_list)
if st.button('Recommend'):
if selected_mooc:
recommended_courses = recommend(selected_mooc)
if recommended_courses:
st.markdown(f'<style>{css_code}</style>', unsafe_allow_html=True)
# Create columns for recommendations
cols = st.columns(4) # You can adjust the number of columns
for i, course in enumerate(recommended_courses):
with cols[i % 4]:
st.markdown(
f'<div class="recommended-course">'
f'<h3 class="course-title">{course.title}</h3>'
f'<p class="course-info"><strong>Subject:</strong> {course.displayed_subject}</p>'
f'<p class="course-info"><strong>Summary:</strong> {course.displayed_summary}</p>'
f'</div>',
unsafe_allow_html=True
)
st.markdown('</div>', unsafe_allow_html=True)
else:
st.write('No recommendations found for the selected course.')
else:
st.write('Please select a course.')
# Additional Streamlit configurations
st.sidebar.title('About')
st.sidebar.info('This web app recommends similar MOOC courses based on course tags.')