-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsft.py
371 lines (323 loc) · 13.2 KB
/
sft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import os
import torch
import logging
import random
import numpy as np
from dataclasses import dataclass
from typing import Optional, Tuple
from PIL import Image
from transformers import (
Trainer,
TrainingArguments,
HfArgumentParser,
set_seed,
AutoImageProcessor,
DefaultDataCollator,
)
from transformers.utils.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from datasets import Dataset, load_dataset
from torchvision import transforms
from flazoo import ABCVisionConfig, ABCForImageClassification
from flazoo import BitNetVisionConfig, BitNetForImageClassification
from flazoo import DeltaNetVisionConfig, DeltaNetForImageClassification
from flazoo import GatedDeltaNetVisionConfig, GatedDeltaNetForImageClassification
from flazoo import GLAVisionConfig, GLAForImageClassification
from flazoo import GSAVisionConfig, GSAForImageClassification
from flazoo import HGRNVisionConfig, HGRNForImageClassification
from flazoo import HGRN2VisionConfig, HGRN2ForImageClassification
from flazoo import LightNetVisionConfig, LightNetForImageClassification
from flazoo import LinearAttentionVisionConfig, LinearAttentionForImageClassification
from flazoo import RetNetVisionConfig, RetNetForImageClassification
from flazoo import RWKV6VisionConfig, RWKV6ForImageClassification
from flazoo import TransformerVisionConfig, TransformerForImageClassification
from flazoo import NSAVisionConfig, NSAForImageClassification
import evaluate
accuracy = evaluate.load("accuracy")
def compute_metrics(eval_pred):
predictions, labels = eval_pred
predictions = np.argmax(predictions, axis=1)
return accuracy.compute(predictions=predictions, references=labels)
def get_wandb_run_name(model_args, data_args, training_args) -> str:
"""
Generate wandb run name from arguments
Format: {model_type}_{dataset}_{train_bs}_{eval_bs}_{epochs}
"""
dataset = data_args.dataset_name.split('/')[-1]
return f"{model_args.model_type}_{dataset.split('/')[-1]}_{model_args.scan_type}_tr{training_args.per_device_train_batch_size}_ev{training_args.per_device_eval_batch_size}_e{int(training_args.num_train_epochs)}_lr{training_args.learning_rate}{"_nchybrid_" + model_args.attn_layers.replace(",", "") if model_args.use_attn else ''}"
@dataclass
class ModelArguments:
"""
Arguments for constructing the FLA-vision models
"""
model_type: str = "deltanet"
num_hidden_layers: int = 6
hidden_size: int = 256
num_heads: int = 16
mlp_dim: Optional[int] = None # default to 4 * hidden_size
attn_mode: str = "chunk"
head_dim: int = 64 # For gated deltanet
fuse_cross_entropy: bool = False
scan_type: str = "uni-scan"
use_attn: bool = False
attn_layers: str = "0,1"
hidden_dropout_prob: float = 0.5
attn_num_heads: int = 16
attn_num_kv_heads: Optional[int] = None
attn_window_size: Optional[int] = None
dtype: str = "float32" # Model precision type: float32, float16, or bfloat16
@dataclass
class DataArguments:
"""
Arguments for dataset preparation
"""
dataset_name: str = "uoft-cs/cifar100"
image_size: int = 224
patch_size: int = 16
@dataclass
class FLATrainingArguments(TrainingArguments):
"""
Arguments for training the model with configurable wandb settings
"""
output_dir: str = "output"
do_train: bool = True
do_eval: bool = True
per_device_train_batch_size: int = 64
per_device_eval_batch_size: int = 64
num_train_epochs: int = 10
logging_steps: int = 100
save_steps: int = 500
eval_steps: int = 1
save_total_limit: int = 1
seed: int = 42
lr_scheduler_type: str = "constant"
warmup_ratio: float = 0.2
report_to: str = "none"
logging_dir: str = "logs"
logging_strategy: str = "steps"
logging_steps: int = 10
save_strategy: str = "epoch"
dataloader_num_workers: int = 32
dataloader_pin_memory: bool = True
persistent_workers: bool = True
adam_beta1: float = 0.9
adam_beta2: float = 0.999
weight_decay: float = 0.05
label_smoothing_factor: float = 0.1
# max_grad_norm: float = 1.0
def __post_init__(self):
super().__post_init__()
if "wandb" in self.report_to:
os.environ["WANDB_PROJECT"] = "fla-vision"
os.makedirs(self.logging_dir, exist_ok=True)
os.makedirs(self.output_dir, exist_ok=True)
def setup_logging(training_args):
if not os.path.exists('logs'):
os.makedirs('logs')
log_filename = f'logs/training_{training_args.output_dir.split('/')[-1]}.log'
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler(log_filename),
logging.StreamHandler()
]
)
logging.info(f"Logging to {log_filename}")
def get_datasets(data_args, model_args):
"""
Load and process datasets using standard HuggingFace image processing pipeline
"""
dataset2class = {
'cifar10': 10,
'cifar100': 100,
'slegroux/tiny-imagenet-200-clean': 200,
'ILSVRC/imagenet-1k': 1000
}
dtype_map = {
"float32": torch.float32,
"float16": torch.float16,
"bfloat16": torch.bfloat16
}
dtype = dtype_map[model_args.dtype]
dataset = load_dataset(data_args.dataset_name)
image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k")
_transforms = transforms.Compose([
transforms.Resize((data_args.image_size, data_args.image_size)),
transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomRotation(degrees=15),
transforms.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1),
transforms.RandomAffine(degrees=0, translate=(0.1, 0.1)),
transforms.ToTensor(),
transforms.Normalize(
mean=image_processor.image_mean,
std=image_processor.image_std
),
transforms.Lambda(lambda x: x.to(dtype))
])
def transform_images_cifar100(examples):
"""Apply transforms to images"""
examples["pixel_values"] = [
_transforms(img)
for img in examples["img"]
]
examples['labels'] = examples['fine_label']
del examples["img"]
del examples["fine_label"]
del examples["coarse_label"]
return examples
def transform_images_cifar10(examples):
"""Apply transforms to images"""
examples["pixel_values"] = [
_transforms(img)
for img in examples["img"]
]
examples['labels'] = examples['label']
del examples["img"]
del examples["label"]
return examples
def transform_tinyimagenet(examples):
"""Apply transforms to images"""
examples["pixel_values"] = [
_transforms(img)
for img in examples["image"]
]
examples['labels'] = examples['label']
del examples["image"]
del examples["label"]
return examples
def transform_imagenet(examples):
"""Apply transforms to ImageNet images with grayscale handling"""
examples["pixel_values"] = []
for img in examples["image"]:
if img.mode != 'RGB':
img = img.convert('RGB')
examples["pixel_values"].append(_transforms(img))
examples['labels'] = examples['label']
del examples["image"]
del examples["label"]
return examples
if data_args.dataset_name == 'ILSVRC/imagenet-1k':
transformed_dataset = dataset.with_transform(transform_imagenet)
elif 'cifar100' in data_args.dataset_name:
transformed_dataset = dataset.with_transform(transform_images_cifar100)
elif 'cifar10' in data_args.dataset_name:
transformed_dataset = dataset.with_transform(transform_images_cifar10)
else:
transformed_dataset = dataset.with_transform(transform_tinyimagenet)
eval_split = 'validation' if 'validation' in transformed_dataset else 'test'
return (
transformed_dataset['train'],
transformed_dataset[eval_split],
dataset2class[data_args.dataset_name]
)
def get_model(model_args, data_args, num_labels):
"""
Initialize model with proper configuration
"""
dtype_map = {
"float32": torch.float32,
"float16": torch.float16,
"bfloat16": torch.bfloat16
}
if model_args.dtype not in dtype_map:
raise ValueError(f"Unsupported dtype: {model_args.dtype}")
dtype = dtype_map[model_args.dtype]
attn_config = None
if model_args.use_attn:
attn_config = {
'layers': [int(i) for i in model_args.attn_layers.split(',')],
'num_heads': model_args.attn_num_heads,
'num_kv_heads': model_args.attn_num_kv_heads,
'window_size': model_args.attn_window_size
}
model_classes = {
'deltanet': (DeltaNetVisionConfig, DeltaNetForImageClassification),
'abc': (ABCVisionConfig, ABCForImageClassification),
'gated_deltanet': (GatedDeltaNetVisionConfig, GatedDeltaNetForImageClassification),
'bitnet': (BitNetVisionConfig, BitNetForImageClassification),
'gla': (GLAVisionConfig, GLAForImageClassification),
'gsa': (GSAVisionConfig, GSAForImageClassification),
'hgrn': (HGRNVisionConfig, HGRNForImageClassification),
'hgrn2': (HGRN2VisionConfig, HGRN2ForImageClassification),
"lightnet": (LightNetVisionConfig, LightNetForImageClassification),
'linear_attn': (LinearAttentionVisionConfig, LinearAttentionForImageClassification),
'retnet': (RetNetVisionConfig, RetNetForImageClassification),
'rwkv6': (RWKV6VisionConfig, RWKV6ForImageClassification),
'transformer': (TransformerVisionConfig, TransformerForImageClassification),
'nsa': (NSAVisionConfig, NSAForImageClassification)
}
if model_args.model_type not in model_classes:
raise ValueError(f"Unsupported model type: {model_args.model_type}")
ConfigClass, ModelClass = model_classes[model_args.model_type]
config = ConfigClass(
num_hidden_layers=model_args.num_hidden_layers,
hidden_size=model_args.hidden_size,
num_heads=model_args.num_heads,
head_dim=model_args.head_dim if "gated_deltanet" in model_args.model_type else None,
patch_size=data_args.patch_size,
image_size=data_args.image_size,
num_classes=num_labels,
attn_mode=model_args.attn_mode,
fuse_cross_entropy=model_args.fuse_cross_entropy,
attn=attn_config,
scan_type=model_args.scan_type,
hidden_dropout_prob=model_args.hidden_dropout_prob,
)
model = ModelClass(config)
return model.to(dtype=dtype)
def print_model_info(model, model_args):
"""
Print model information in a formatted way
"""
logging.info("\n" + "="*80)
logging.info("Model Configuration:")
logging.info("-"*40)
# Print model parameters statistics
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
logging.info(f"{'Model Type:':<25} {model_args.model_type}")
logging.info(f"{'Total Parameters:':<25} {total_params:,}")
logging.info(f"{'Trainable Parameters:':<25} {trainable_params:,}")
logging.info(f"{'Parameter Efficiency:':<25} {trainable_params/total_params*100:.2f}%")
if model_args.use_attn:
logging.info("\nAttention Configuration:")
logging.info("-"*40)
logging.info(f"{'Attention Layers:':<25} {model_args.attn_layers}")
logging.info(f"{'Number of Heads:':<25} {model_args.attn_num_heads}")
if model_args.attn_num_kv_heads:
logging.info(f"{'Number of KV Heads:':<25} {model_args.attn_num_kv_heads}")
if model_args.attn_window_size:
logging.info(f"{'Window Size:':<25} {model_args.attn_window_size}")
logging.info("="*40 + "\n")
def main():
parser = HfArgumentParser((ModelArguments, DataArguments, FLATrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if "wandb" in training_args.report_to:
training_args.run_name = get_wandb_run_name(model_args, data_args, training_args)
setup_logging(training_args)
set_seed(training_args.seed)
train_dataset, eval_dataset, num_labels = get_datasets(data_args, model_args)
model = get_model(model_args, data_args, num_labels)
print_model_info(model, model_args)
data_collator = DefaultDataCollator()
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
data_collator=data_collator,
compute_metrics=compute_metrics,
)
if training_args.do_train:
train_result = trainer.train()
trainer.save_model()
metrics = train_result.metrics
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
if training_args.do_eval:
metrics = trainer.evaluate()
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
if __name__ == "__main__":
main()