forked from gdjmck/AttentionBasedEmbeddingForMetricLearning
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
217 lines (177 loc) · 7.29 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import torchvision.models as models
import GoogLeNet
import os
class MetricLearner(GoogLeNet.GoogLeNet):
def __init__(self, att_heads=8, pretrain=None, batch_k=5, normalize=False):
super(MetricLearner, self).__init__()
if pretrain:
if os.path.exists(pretrain):
self.load_state_dict(torch.load(pretrain))
print('Loaded pretrained GoogLeNet.')
else:
print('Downloading pretrained GoogLeNet.')
state_dict = torch.utils.model_zoo.load_url('https://download.pytorch.org/models/googlenet-1378be20.pth')
self.load_state_dict(state_dict)
assert 512 % att_heads == 0
self.att_heads = att_heads
self.out_dim = int(512 / self.att_heads)
self.att_depth = 480
self.att = nn.ModuleList([nn.Conv2d(in_channels=832, out_channels=self.att_depth, kernel_size=1, bias=False) for i in range(att_heads)])
self.last_fc = nn.Linear(1024, self.out_dim)
self.sampled = DistanceWeightedSampling(batch_k=batch_k, normalize=normalize)
def feat_spatial(self, x):
# N x 3 x 224 x 224
x = self.conv1(x)
# N x 64 x 112 x 112
x = self.maxpool1(x)
# N x 64 x 56 x 56
x = self.conv2(x)
# N x 64 x 56 x 56
x = self.conv3(x)
# N x 192 x 56 x 56
x = self.maxpool2(x)
# N x 192 x 28 x 28
x = self.inception3a(x)
# N x 256 x 28 x 28
x = self.inception3b(x)
# N x 480 x 28 x 28
x = self.maxpool3(x)
return x
def feat_global(self, x):
# N x 480 x 14 x 14
x = self.a4_to_e4(x)
# N x 832 x 14 x 14
x = self.maxpool4(x)
# N x 832 x 7 x 7
x = self.inception5a(x)
# N x 832 x 7 x 7
x = self.inception5b(x)
# N x 1024 x 7 x 7
x = self.avgpool(x)
# N x 1024 x 1 x 1
x = torch.flatten(x, 1)
# N x 1024
#x = self.dropout(x)
# N x 1024
x = self.last_fc(x)
# N x (512/M)
x = F.normalize(x)
return x
def a4_to_e4(self, x):
# N x 480 x 14 x 14
a4 = self.inception4a(x)
# N x 512 x 14 x 14
b4 = self.inception4b(a4)
# N x 512 x 14 x 14
c4 = self.inception4c(b4)
# N x 512 x 14 x 14
d4 = self.inception4d(c4)
# N x 528 x 14 x 14
e4 = self.inception4e(d4)
# N x 832 x 14 x 14
return e4
def forward(self, x, ret_att=False, sampling=True):
# N x 3 x 224 x 224
sp = self.feat_spatial(x)
# output of pool3
att_input = self.a4_to_e4(sp)
atts = [self.att[i](att_input) for i in range(self.att_heads)] # (N, att_heads, depth, H, W)
# Normalize attention map
for i in range(len(atts)):
N, D, H, W = atts[i].size()
att = atts[i].view(-1, H*W)
att_max, _ = att.max(dim=1, keepdim=True)
att_min, _ = att.min(dim=1, keepdim=True)
atts[i] = ((att - att_min) / (att_max - att_min)).view(N, D, H, W)
embedding = torch.cat([self.feat_global(atts[i]*sp).unsqueeze(1) for i in range(self.att_heads)], 1)
#print('embedding in forward:', embedding.shape)
embedding = torch.flatten(embedding, 1)
if sampling:
return self.sampled(embedding) if not ret_att else (self.sampled(embedding), atts)
else:
return (embedding, atts) if ret_att else embedding
def l2_norm(x):
if len(x.shape):
x = x.reshape((x.shape[0],-1))
return F.normalize(x, p=2, dim=1)
def get_distance(x):
_x = x.detach()
sim = torch.matmul(_x, _x.t())
sim = torch.clamp(sim, max=1.0)
#print('\n\n', np.count_nonzero(sim.cpu().numpy() > 0.9) / (sim.shape[0] * sim.shape[1]), sim.shape)
dist = 2 - 2*sim
dist += torch.eye(dist.shape[0]).to(dist.device) # maybe dist += torch.eye(dist.shape[0]).to(dist.device)*1e-8
dist = dist.sqrt()
return dist
class DistanceWeightedSampling(nn.Module):
def __init__(self, batch_k, cutoff=0.5, nonzero_loss_cutoff=1.4, normalize =False, **kwargs):
super(DistanceWeightedSampling,self).__init__()
self.batch_k = batch_k
self.cutoff = cutoff
self.nonzero_loss_cutoff = nonzero_loss_cutoff
self.normalize = normalize
def forward(self, x):
k = self.batch_k
n, d = x.shape
x_in = x
x = F.normalize(x)
#print('Raw x:', x[0, :])
distance = get_distance(x) # n x n
#print('Raw distance:', distance[0, ...])
distance = distance.clamp(min=self.cutoff) # 将inner product > 0.875 的压缩到0.875,即不让两个vector太过像
log_weights = ((2.0 - float(d)) * distance.log() - (float(d-3)/2)*torch.log(torch.clamp(1.0 - 0.25*(distance*distance), min=1e-8)))
if self.normalize:
log_weights = (log_weights - log_weights.min()) / (log_weights.max() - log_weights.min() + 1e-8)
weights = torch.exp(log_weights - torch.max(log_weights))
if x.device != weights.device:
weights = weights.to(x.device)
mask = torch.ones_like(weights)
for i in range(0,n,k):
mask[i:i+k, i:i+k] = 0
mask_uniform_probs = mask.double() *(1.0/(n-k))
weights = weights*mask*((distance < self.nonzero_loss_cutoff).float()) + 1e-8
weights_sum = torch.sum(weights, dim=1, keepdim=True)
weights = weights / weights_sum
#print('\t1st line of w:', weights[0, ...])
a_indices = []
p_indices = []
n_indices = []
np_weights = weights.cpu().numpy()
# np_weights = np.nan_to_num(np_weights, 1e-8)
# From https://github.com/suruoxi/DistanceWeightedSampling/blob/master/model.py#L151
for i in range(n):
block_idx = i // k
if weights_sum[i] != 0:
n_indices += np.random.choice(n, k-1, p=np_weights[i]).tolist()
else:
n_indices += np.random.choice(n, k-1, p=mask_uniform_probs[i]).tolist()
for j in range(block_idx * k, (block_idx + 1)*k):
if j != i:
a_indices.append(i)
p_indices.append(j)
return a_indices, x_in[a_indices], x_in[p_indices], x[n_indices], x_in
# Original code
for i in range(n):
block_idx = i // k
if weights_sum[i] != 0:
n_indices += np.random.choice(n, (block_idx+1)*k-i-1, p=np_weights[i]).tolist()
else:
n_indices += np.random.choice(n, k-1, p=mask_uniform_probs[i]).tolist()
for j in range(block_idx*k, (block_idx + 1)*k):
if j != i:
a_indices.append(i)
p_indices.append(j)
# Changed: x_in[n_indices] -> x_in[p_indices]
#return a_indices, x_in[a_indices], x_in[p_indices], x_in[n_indices], x_in
return a_indices, x_in[a_indices], x_in[p_indices], x_in[p_indices], x_in
if __name__ == '__main__':
import numpy as np
from thop import profile
input = torch.Tensor(np.zeros((1, 3, 224, 224)))
model = MetricLearner()
flops, params = profile(model, inputs=(input, ))
print(flops, params)